- -

Market-based control of plug-in electric vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Market-based control of plug-in electric vehicles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor González Vayá, Marina es_ES
dc.contributor.advisor Andersson, Göran es_ES
dc.contributor.author Briones Roselló, Luis es_ES
dc.date.accessioned 2014-05-12T08:36:28Z
dc.date.available 2014-05-12T08:36:28Z
dc.date.created 2014-07
dc.date.issued 2014-05-12
dc.identifier.uri http://hdl.handle.net/10251/37389
dc.description.abstract Consulta en la Biblioteca ETSI Industriales (Riunet) es_ES
dc.description.abstract [EN] The integration of a high number of plug-in electric (PEV) vehicles could lead to overloads in the systems assets and demand peaks if the charge of the eet is left uncontrolled. However, with the use of smart-charging strategies these problems could be avoided. In this work the development of a smartcharging strategy is presented. The goal of each electric vehicle, modeled as an agent, is to minimize the cost of energy purchase while satisfying the energy requirements. To solve this problem, multi-agent system theory is used in combination with market-based control. The vehicles are considered as agents bidding on the market, optimizing their bidding to minimize their costs. An aggregator agentacts as communication middleman between the vehicles and the market. This way, a system with a high number of agents competing for the resources is established. The resources are allocated according to the demand-supply theory, and the equilibrium price of the day-ahead market is used as a control signal. Moreover, a Q-learning algorithm is used for the learning process of the vehicles, establishing their optimal bidding strategy. In our case studies, we analyze this approach both in a simple market clearing and an Optimal Flow setting. Moreover, we analyze the e ect of uncertainties in driving patterns and non-PEV bids. The results show that the use of this strategy leads to a lower energy costs for the vehicles. The eet charges mainly during the night hours, avoiding the charge during demand peaks. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Consulta en la Biblioteca ETSI Industriales es_ES
dc.subject Vehiculos eléctricos es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.subject.other Ingeniero Industrial-Enginyer Industrial es_ES
dc.title Market-based control of plug-in electric vehicles es_ES
dc.type Proyecto/Trabajo fin de carrera/grado es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.description.bibliographicCitation Briones Roselló, L. (2014). Market-based control of plug-in electric vehicles. http://hdl.handle.net/10251/37389. es_ES
dc.description.accrualMethod Archivo delegado es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem