- -

Evaluating a reinforcement learning algorithm with a general intelligence test

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Evaluating a reinforcement learning algorithm with a general intelligence test

Show full item record

Insa Cabrera, J.; Dowe, DL.; Hernández Orallo, J. (2011). Evaluating a reinforcement learning algorithm with a general intelligence test. En Advances in Artificial Intelligence. Springer Verlag (Germany). 7023:1-11. https://doi.org/10.1007/978-3-642-25274-7_1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37392

Files in this item

Item Metadata

Title: Evaluating a reinforcement learning algorithm with a general intelligence test
Author: Insa Cabrera, Javier Dowe, David L. Hernández Orallo, José
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
In this paper we apply the recent notion of anytime universal intelligence tests to the evaluation of a popular reinforcement learning algorithm, Q-learning. We show that a general approach to intelligence evaluation of ...[+]
Subjects: AI algorithms , General approach , General intelligence tests , Intelligence tests , Q-learning , Specific tasks , Topdown , Artificial intelligence , Reinforcement , Reinforcement learning , Learning algorithms
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-642-25273-0
Source:
Advances in Artificial Intelligence. (issn: 0302-9743 )
DOI: 10.1007/978-3-642-25274-7_1
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/chapter/10.1007/978-3-642-25274-7_1
Conference name: 14th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2011
Conference place: La Laguna, Spain
Conference date: November 7-11, 2011
Series: Lecture Notes in Computer Science;7023
Project ID:
info:eu-repo/grantAgreement/MICINN//TIN2009-06078-E/ES/ANYTIME UNIVERSAL INTELLIGENCE/
info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/
MICINN/TIN2010-21062-C02
info:eu-repo/grantAgreement/MEC//AP2006-0232/ES/AP2006-0232/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/
Thanks:
We are grateful for the funding from the Spanish MEC and MICINN for projects TIN2009-06078-E/TIN, Consolider-Ingenio CSD2007-00022 and TIN2010-21062-C02, for MEC FPU grant AP2006-02323, and Generalitat Valenciana for ...[+]
Type: Capítulo de libro

References

Dowe, D.L., Hajek, A.R.: A non-behavioural, computational extension to the Turing Test. In: Intl. Conf. on Computational Intelligence & multimedia applications (ICCIMA 1998), Gippsland, Australia, pp. 101–106 (1998)

Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competition. AI Magazine 26(2), 62 (2005)

Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000) [+]
Dowe, D.L., Hajek, A.R.: A non-behavioural, computational extension to the Turing Test. In: Intl. Conf. on Computational Intelligence & multimedia applications (ICCIMA 1998), Gippsland, Australia, pp. 101–106 (1998)

Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competition. AI Magazine 26(2), 62 (2005)

Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000)

Hernández-Orallo, J.: A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In: Hutter, M., et al. (eds.) 3rd Intl. Conf. on Artificial General Intelligence, Atlantis, pp. 182–183 (2010)

Hernández-Orallo, J.: On evaluating agent performance in a fixed period of time. In: Hutter, M., et al. (eds.) 3rd Intl. Conf. on Artificial General Intelligence, pp. 25–30. Atlantis Press (2010)

Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)

Legg, S., Hutter, M.: A universal measure of intelligence for artificial agents. Intl. Joint Conf. on Artificial Intelligence, IJCAI 19, 1509 (2005)

Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007)

Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)

Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer-Verlag New York, Inc. (2008)

Sanghi, P., Dowe, D.L.: A computer program capable of passing IQ tests. In: Proc. 4th ICCS International Conference on Cognitive Science (ICCS 2003), Sydney, Australia, pp. 570–575 (2003)

Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and Control 7(1), 1–22 (1964)

Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free reinforcement learning. In: Proc. of the 23rd Intl. Conf. on Machine Learning, ICML 2006, New York, pp. 881–888 (2006)

Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT press (1998)

Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

Veness, J., Ng, K.S., Hutter, M., Silver, D.: Reinforcement learning via AIXI approximation. In: Proc. 24th Conf. on Artificial Intelligence (AAAI 2010), pp. 605–611 (2010)

Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992)

Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent systems state-of-the-art and research challenges. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 1–47. Springer, Heidelberg (2005)

Whiteson, S., Tanner, B., White, A.: The Reinforcement Learning Competitions. The AI magazine 31(2), 81–94 (2010)

Woergoetter, F., Porr, B.: Reinforcement learning. Scholarpedia 3(3), 1448 (2008)

Zatuchna, Z., Bagnall, A.: Learning mazes with aliasing states: An LCS algorithm with associative perception. Adaptive Behavior 17(1), 28–57 (2009)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record