- -

Dorsal and ventral stimuli in sandwich-like microenvironments. Effect on cell differentiation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dorsal and ventral stimuli in sandwich-like microenvironments. Effect on cell differentiation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballester Beltrán, José es_ES
dc.contributor.author Lebourg, Myriam Madeleine es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2014-05-14T08:01:48Z
dc.date.issued 2013-06-27
dc.identifier.issn 0006-3592
dc.identifier.uri http://hdl.handle.net/10251/37462
dc.description.abstract While most of the in vivo extracellular matrices are 3D, most of the in vitro cultures are 2D--where only ventral adhesion is permitted--thus modifying cell behavior as a way to self-adaptation to this unnatural environment. We hypothesize that the excitation of dorsal receptors in cells already attached on a 2D surface (sandwich culture) could cover the gap between 2D and 3D cell-material interactions and result in a more physiological cell behavior. In this study we investigate the role of dorsal stimulation on myoblast differentiation within different poly(L-lactic acid) (PLLA) sandwich-like microenvironments, including plain material and aligned fibers. Enhanced cell differentiation levels were found for cells cultured with dorsal fibronectin-coated films. Seeking to understand the underlying mechanisms, experiments were carried out with (i) different types of dorsal stimuli (FN, albumin, FN after blocking the RGD integrin-binding site and activating dorsal cell integrin receptors), (ii) in the presence of an inhibitor of cell contractility, and (iii) increasing the frequency of culture medium changes to assess the effect of paracrine factors. Furthermore, FAK and integrin expressions, determined by Western blotting, revealed differences between cell sandwiches and 2D controls. Results show a stimuli-dependent response to dorsal excitation, proving that integrin outside-in signaling is involved in the enhanced cell differentiation. Due to their easiness and versatility, these sandwich-like systems are excellent candidates to get deeper insights into the study of 3D cell behavior and to direct cell fate within multilayer constructs. es_ES
dc.description.sponsorship Contract grant sponsor: ERC - 306990 en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Biotechnology and Bioengineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 3D matrix adhesion es_ES
dc.subject fibronectin es_ES
dc.subject multilayers es_ES
dc.subject myoblasts es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification TERMODINAMICA APLICADA (UPV) es_ES
dc.title Dorsal and ventral stimuli in sandwich-like microenvironments. Effect on cell differentiation es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/bit.24972
dc.relation.projectID info:eu-repo/grantAgreement/ME//AP2009-2326/ES/AP2009-2326/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/306990/EU/Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments/ en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ballester Beltrán, J.; Lebourg, MM.; Salmerón Sánchez, M. (2013). Dorsal and ventral stimuli in sandwich-like microenvironments. Effect on cell differentiation. Biotechnology and Bioengineering. 11:3048-3058. https://doi.org/10.1002/bit.24972 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/bit.24972 es_ES
dc.description.upvformatpinicio 3048 es_ES
dc.description.upvformatpfin 3058 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.relation.senia 254589
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder European Commission
dc.description.references Bajaj, P., Reddy, B., Millet, L., Wei, C., Zorlutuna, P., Bao, G., & Bashir, R. (2011). Patterning the differentiation of C2C12 skeletal myoblasts. Integrative Biology, 3(9), 897. doi:10.1039/c1ib00058f es_ES
dc.description.references Ballester-Beltrán, J., Cantini, M., Lebourg, M., Rico, P., Moratal, D., García, A. J., & Salmerón-Sánchez, M. (2011). Effect of topological cues on material-driven fibronectin fibrillogenesis and cell differentiation. Journal of Materials Science: Materials in Medicine, 23(1), 195-204. doi:10.1007/s10856-011-4532-z es_ES
dc.description.references Ballester-Beltrán, J., Lebourg, M., Rico, P., & Salmerón-Sánchez, M. (2012). Dorsal and Ventral Stimuli in Cell–Material Interactions: Effect on Cell Morphology. Biointerphases, 7(1), 39. doi:10.1007/s13758-012-0039-5 es_ES
dc.description.references Belkin, A. M., Zhidkova, N. I., Balzac, F., Altruda, F., Tomatis, D., Maier, A., … Burridge, K. (1996). Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells. The Journal of Cell Biology, 132(1), 211-226. doi:10.1083/jcb.132.1.211 es_ES
dc.description.references Bennett, A. M. (1997). Regulation of Distinct Stages of Skeletal Muscle Differentiation by Mitogen-Activated Protein Kinases. Science, 278(5341), 1288-1291. doi:10.1126/science.278.5341.1288 es_ES
dc.description.references Boonen, K. J. M., Langelaan, M. L. P., Polak, R. B., van der Schaft, D. W. J., Baaijens, F. P. T., & Post, M. J. (2010). Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering. Journal of Biomechanics, 43(8), 1514-1521. doi:10.1016/j.jbiomech.2010.01.039 es_ES
dc.description.references Chan, X. C. Y., McDermott, J. C., & Siu, K. W. M. (2007). Identification of Secreted Proteins during Skeletal Muscle Development. Journal of Proteome Research, 6(2), 698-710. doi:10.1021/pr060448k es_ES
dc.description.references Charest, J. L., García, A. J., & King, W. P. (2007). Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials, 28(13), 2202-2210. doi:10.1016/j.biomaterials.2007.01.020 es_ES
dc.description.references Chatzizacharias, N. A., Kouraklis, G. P., & Theocharis, S. E. (2008). Disruption of FAK signaling: A side mechanism in cytotoxicity. Toxicology, 245(1-2), 1-10. doi:10.1016/j.tox.2007.12.003 es_ES
dc.description.references Chen, S.-E., Jin, B., & Li, Y.-P. (2007). TNF-α regulates myogenesis and muscle regeneration by activating p38 MAPK. American Journal of Physiology-Cell Physiology, 292(5), C1660-C1671. doi:10.1152/ajpcell.00486.2006 es_ES
dc.description.references Clegg, C. H., Linkhart, T. A., Olwin, B. B., & Hauschka, S. D. (1987). Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. The Journal of Cell Biology, 105(2), 949-956. doi:10.1083/jcb.105.2.949 es_ES
dc.description.references Clemente, C. F. M. Z., Corat, M. A. F., Saad, S. T. O., & Franchini, K. G. (2005). Differentiation of C2C12 myoblasts is critically regulated by FAK signaling. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289(3), R862-R870. doi:10.1152/ajpregu.00348.2004 es_ES
dc.description.references Cukierman, E. (2001). Taking Cell-Matrix Adhesions to the Third Dimension. Science, 294(5547), 1708-1712. doi:10.1126/science.1064829 es_ES
dc.description.references Cukierman, E., Pankov, R., & Yamada, K. M. (2002). Cell interactions with three-dimensional matrices. Current Opinion in Cell Biology, 14(5), 633-640. doi:10.1016/s0955-0674(02)00364-2 es_ES
dc.description.references Haba, G. D. L., Cooper, G. W., & Elting, V. (1966). HORMONAL REQUIREMENTS FOR MYOGENESIS OF STRIATED MUSCLE IN VITRO: INSULIN AND SOMATOTROPIN. Proceedings of the National Academy of Sciences, 56(6), 1719-1723. doi:10.1073/pnas.56.6.1719 es_ES
dc.description.references Di Carlo, A., De Mori, R., Martelli, F., Pompilio, G., Capogrossi, M. C., & Germani, A. (2004). Hypoxia Inhibits Myogenic Differentiation through Accelerated MyoD Degradation. Journal of Biological Chemistry, 279(16), 16332-16338. doi:10.1074/jbc.m313931200 es_ES
dc.description.references Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 126(4), 677-689. doi:10.1016/j.cell.2006.06.044 es_ES
dc.description.references Evinger-Hodges, M. J., Ewton, D. Z., Seifert, S. C., & Florini, J. R. (1982). Inhibition of myoblast differentiation in vitro by a protein isolated from liver cell medium. The Journal of Cell Biology, 93(2), 395-401. doi:10.1083/jcb.93.2.395 es_ES
dc.description.references Florini, J. R., & Magri, K. A. (1989). Effects of growth factors on myogenic differentiation. American Journal of Physiology-Cell Physiology, 256(4), C701-C711. doi:10.1152/ajpcell.1989.256.4.c701 es_ES
dc.description.references Florini, J. R., Ewton, D. Z., & Magri, K. A. (1991). Hormones, Growth Factors, and Myogenic Differentiation. Annual Review of Physiology, 53(1), 201-216. doi:10.1146/annurev.ph.53.030191.001221 es_ES
dc.description.references Garcı́a, A. J., Vega, M. D., & Boettiger, D. (1999). Modulation of Cell Proliferation and Differentiation through Substrate-dependent Changes in Fibronectin Conformation. Molecular Biology of the Cell, 10(3), 785-798. doi:10.1091/mbc.10.3.785 es_ES
dc.description.references House, M., Daniel, J., Elstad, K., Socrate, S., & Kaplan, D. L. (2012). Oxygen Tension and Formation of Cervical-Like Tissue in Two-Dimensional and Three-Dimensional Culture. Tissue Engineering Part A, 18(5-6), 499-507. doi:10.1089/ten.tea.2011.0309 es_ES
dc.description.references Hutmacher, D. W. (2010). Biomaterials offer cancer research the third dimension. Nature Materials, 9(2), 90-93. doi:10.1038/nmat2619 es_ES
dc.description.references Ingber, D. E. (2003). Tensegrity I. Cell structure and hierarchical systems biology. Journal of Cell Science, 116(7), 1157-1173. doi:10.1242/jcs.00359 es_ES
dc.description.references Ishii, I. (2001). Histological and functional analysis of vascular smooth muscle cells in a novel culture system with honeycomb-like structure. Atherosclerosis, 158(2), 377-384. doi:10.1016/s0021-9150(01)00461-0 es_ES
dc.description.references Kislinger, T., Gramolini, A. O., Pan, Y., Rahman, K., MacLennan, D. H., & Emili, A. (2005). Proteome Dynamics during C2C12 Myoblast Differentiation. Molecular & Cellular Proteomics, 4(7), 887-901. doi:10.1074/mcp.m400182-mcp200 es_ES
dc.description.references LI, Y.-P., & SCHWARTZ, R. J. (2001). TNF-α regulates early differentiation of C2C12 myoblasts in an autocrine fashion. The FASEB Journal, 15(8), 1413-1415. doi:10.1096/fj.00-0632fje es_ES
dc.description.references Liu, H., Niu, A., Chen, S.-E., & Li, Y.-P. (2011). β3-Integrin mediates satellite cell differentiation in regenerating mouse muscle. The FASEB Journal, 25(6), 1914-1921. doi:10.1096/fj.10-170449 es_ES
dc.description.references Lutolf MP Hubbell JA 2005 47 55 es_ES
dc.description.references Mancini, A., Sirabella, D., Zhang, W., Yamazaki, H., Shirao, T., & Krauss, R. S. (2011). Regulation of myotube formation by the actin-binding factor drebrin. Skeletal Muscle, 1(1), 36. doi:10.1186/2044-5040-1-36 es_ES
dc.description.references Meighan, C. M., & Schwarzbauer, J. E. (2008). Temporal and spatial regulation of integrins during development. Current Opinion in Cell Biology, 20(5), 520-524. doi:10.1016/j.ceb.2008.05.010 es_ES
dc.description.references O'Connell B 2002 Oval Profile Plot. Research Services Branch, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke. Available from http://rsbweb.nih.gov/ij/plugins/oval-profile.html es_ES
dc.description.references PECKHAM, M. (2008). Engineering a multi-nucleated myotube, the role of the actin cytoskeleton. Journal of Microscopy, 231(3), 486-493. doi:10.1111/j.1365-2818.2008.02061.x es_ES
dc.description.references Quach, N. L., & Rando, T. A. (2006). Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Developmental Biology, 293(1), 38-52. doi:10.1016/j.ydbio.2005.12.040 es_ES
dc.description.references Rasband WS ImageJ U.S. National Institutes of Health, Bethesda, Maryland, USA http://imagej.nih.gov/ij/1997-2012 es_ES
dc.description.references Ren, K., Crouzier, T., Roy, C., & Picart, C. (2008). Polyelectrolyte Multilayer Films of Controlled Stiffness Modulate Myoblast Cell Differentiation. Advanced Functional Materials, 18(9), 1378-1389. doi:10.1002/adfm.200701297 es_ES
dc.description.references Rimann, M., & Graf-Hausner, U. (2012). Synthetic 3D multicellular systems for drug development. Current Opinion in Biotechnology, 23(5), 803-809. doi:10.1016/j.copbio.2012.01.011 es_ES
dc.description.references Salmerón-Sánchez, M., Rico, P., Moratal, D., Lee, T. T., Schwarzbauer, J. E., & García, A. J. (2011). Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials, 32(8), 2099-2105. doi:10.1016/j.biomaterials.2010.11.057 es_ES
dc.description.references Sastry, S. K., Lakonishok, M., Wu, S., Truong, T. Q., Huttenlocher, A., Turner, C. E., & Horwitz, A. F. (1999). Quantitative Changes in Integrin and Focal Adhesion Signaling Regulate Myoblast Cell Cycle Withdrawal. The Journal of Cell Biology, 144(6), 1295-1309. doi:10.1083/jcb.144.6.1295 es_ES
dc.description.references Schlaepfer, D. D., Hanks, S. K., Hunter, T., & Geer, P. van der. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature, 372(6508), 786-791. doi:10.1038/372786a0 es_ES
dc.description.references SCHOEN, R. C., BENTLEY, K. L., & KLEBE, R. J. (1982). Monoclonal Antibody Against Human Fibronectin Which Inhibits Cell Attachment. Hybridoma, 1(2), 99-108. doi:10.1089/hyb.1.1982.1.99 es_ES
dc.description.references Selinummi, J., Seppälä, J., Yli-Harja, O., & Puhakka, J. A. (2005). Software for quantification of labeled bacteria from digital microscope images by automated image analysis. BioTechniques, 39(6), 859-863. doi:10.2144/000112018 es_ES
dc.description.references Smith, A. S. T., Passey, S., Greensmith, L., Mudera, V., & Lewis, M. P. (2012). Characterization and optimization of a simple, repeatable system for the long term in vitro culture of aligned myotubes in 3D. Journal of Cellular Biochemistry, 113(3), 1044-1053. doi:10.1002/jcb.23437 es_ES
dc.description.references Streuli, C. H. (2008). Integrins and cell-fate determination. Journal of Cell Science, 122(2), 171-177. doi:10.1242/jcs.018945 es_ES
dc.description.references Tamada, Y., & Ikada, Y. (1993). Effect of Preadsorbed Proteins on Cell Adhesion to Polymer Surfaces. Journal of Colloid and Interface Science, 155(2), 334-339. doi:10.1006/jcis.1993.1044 es_ES
dc.description.references Tanaka, K., Sato, K., Yoshida, T., Fukuda, T., Hanamura, K., Kojima, N., … Watanabe, H. (2011). Evidence for cell density affecting C2C12 myogenesis: possible regulation of myogenesis by cell-cell communication. Muscle & Nerve, 44(6), 968-977. doi:10.1002/mus.22224 es_ES
dc.description.references Tse, J. R., & Engler, A. J. (2011). Stiffness Gradients Mimicking In Vivo Tissue Variation Regulate Mesenchymal Stem Cell Fate. PLoS ONE, 6(1), e15978. doi:10.1371/journal.pone.0015978 es_ES
dc.description.references Wakelam, M. J. (1985). The fusion of myoblasts. Biochemical Journal, 228(1), 1-12. doi:10.1042/bj2280001 es_ES
dc.description.references Wei, W.-C., Lin, H.-H., Shen, M.-R., & Tang, M.-J. (2008). Mechanosensing machinery for cells under low substratum rigidity. American Journal of Physiology-Cell Physiology, 295(6), C1579-C1589. doi:10.1152/ajpcell.00223.2008 es_ES
dc.description.references WEISS, P. (1959). Cellular Dynamics. Reviews of Modern Physics, 31(1), 11-20. doi:10.1103/revmodphys.31.11 es_ES
dc.description.references Yamada, K. M., Pankov, R., & Cukierman, E. (2003). Dimensions and dynamics in integrin function. Brazilian Journal of Medical and Biological Research, 36(8), 959-966. doi:10.1590/s0100-879x2003000800001 es_ES
dc.description.references Zelzer, M., Albutt, D., Alexander, M. R., & Russell, N. A. (2011). The Role of Albumin and Fibronectin in the Adhesion of Fibroblasts to Plasma Polymer Surfaces. Plasma Processes and Polymers, 9(2), 149-156. doi:10.1002/ppap.201100054 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem