- -

Solving random diffusion models with nonlinear perturbations by the Wiener-Hermite expansion method

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Solving random diffusion models with nonlinear perturbations by the Wiener-Hermite expansion method

Show full item record

Cortés López, JC.; Romero Bauset, JV.; Roselló Ferragud, MD.; Santamaria Navarro, C. (2011). Solving random diffusion models with nonlinear perturbations by the Wiener-Hermite expansion method. Computers and Mathematics with Applications. 61(8):1946-1950. doi:10.1016/j.camwa.2010.07.057

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37626

Files in this item

Item Metadata

Title: Solving random diffusion models with nonlinear perturbations by the Wiener-Hermite expansion method
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] This paper deals with the construction of approximate series solutions of random nonlinear diffusion equations where nonlinearity is considered by means of a frank small parameter and uncertainty is introduced through ...[+]
Subjects: Random differential equation , Perturbation method , Wiener¿Hermite expansion
Copyrigths: Reserva de todos los derechos
Source:
Computers and Mathematics with Applications. (issn: 0898-1221 )
DOI: 10.1016/j.camwa.2010.07.057
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.camwa.2010.07.057
Conference name: 3rd International Symposium on Nonlinear Dynamics
Conference place: Shanghai, China
Conference date: September 25-28, 2010
Thanks:
This work was partially supported by the Spanish M.C.Y.T. and FEDER grants MTM2009-08587, TRA2007-68006-C02-02, DPI2010-20891-C02-01 as well as the Universidad Politécnica de Valencia grant PAID-06-09 (ref. 2588).
Type: Artículo Comunicación en congreso

This item appears in the following Collection(s)

Show full item record