- -

Radial basis function neural networks applied to efficient QRST cancellation in atrial fibrillation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Radial basis function neural networks applied to efficient QRST cancellation in atrial fibrillation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mateo, Jorge es_ES
dc.contributor.author Rieta Ibañez, José Joaquín es_ES
dc.date.accessioned 2014-05-20T15:04:40Z
dc.date.issued 2013-02-01
dc.identifier.issn 0010-4825
dc.identifier.uri http://hdl.handle.net/10251/37631
dc.description.abstract The most extended noninvasive technique for medical diagnosis and analysis of atrial fibrillation (AF) relies on the surface elctrocardiogram (ECG). In order to take optimal profit of the ECG in the study of AF, it is mandatory to separate the atrial activity (AA) from other cardioelectric signals. Traditionally, template matching and subtraction (TMS) has been the most widely used technique for single-lead ECGs, whereas multi-lead ECGs have been addressed through statistical signal processing techniques, like independent component analysis. In this contribution, a new QRST cancellation method based on a radial basis function (RBF) neural network is proposed. The system is able to provide efficient QRST cancellation and can be applied both to single and multi-lead ECG recordings. The learning algorithm used for training the RBF makes use of a special class of network, known as cosine RBF, by updating selected adjustable parameters to minimize the class-conditional variances at the outputs of the network. The experiments verify that RBFs trained by the proposed learning algorithm are capable of reducing the QRST complex dramatically, a property that is not shared by other methods and conventional feed-forward neural networks. Average Results (mean +/- std) for the RBF method in cross-correlation (CC) between original and estimated AA are CC = 0.95 +/- 0.038 being the mean square error (MSE) for the same signals, MSE = 0.311 +/- 0.078. Regarding spectral parameters, the dominant amplitude (DA) and the mean power spectral (MP) were DA = 1.15 +/- 0.18 and MP = 0.31 +/- 0.07, respectively. In contrast, traditional TMS-based methods yielded, for the best case, CC = 0.864 +/- 0.041, MSE = 0.577 +/- 0.097, DA = 0.84 +/- 0.25 and MP = 0.24 +/- 0.07. The results prove that the RBF based method is able to obtain a remarkable reduction of ventricular activity and a very accurate preservation of the AA, thus providing high quality dissociation between atrial and ventricular activities in AF recordings. (C) 2012 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work has been supported by the projects TEC2010-20633 from the Spanish Ministry of Science and Innovation, PII1C09-0036-3237 and PII2C09-0224-5983 from Junta de Comunidades de Castilla la Mancha. en_EN
dc.format.extent 10 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers in Biology and Medicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrocardiogram es_ES
dc.subject ECG es_ES
dc.subject QRST cancellation es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Radial basis function es_ES
dc.subject Neural networks es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Radial basis function neural networks applied to efficient QRST cancellation in atrial fibrillation es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.compbiomed.2012.11.007
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-20633/ES/DESARROLLO Y APLICACION DE ESTIMADORES AVANZADOS DE ORGANIZACION PARA LA CLASIFICACION TERAPEUTICA Y EL SEGUIMIENTO DE PACIENTES CON FIBRILACION AURICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII1C09-0036-3237/ES/Predicción De Riesgo De Muerte Súbita Tras Infarto De Miocardio Mediante Técnicas Avanzadas De Procesado Digital De Señal/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PII2C09-0224-5983/ES/Aplicación De Metodologías No Lineales Para La Estimación Robusta Y No Invasiva De La Organización En Fibrilación Auricular/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Grupo de ingeniería en bioseñales e imagen radiológica es_ES
dc.description.bibliographicCitation Mateo, J.; Rieta Ibañez, JJ. (2013). Radial basis function neural networks applied to efficient QRST cancellation in atrial fibrillation. Computers in Biology and Medicine. 43(2):154-163. https://doi.org/10.1016/j.compbiomed.2012.11.007 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.compbiomed.2012.11.007 es_ES
dc.description.upvformatpinicio 154 es_ES
dc.description.upvformatpfin 163 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 260217
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem