- -

Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Ribera, Vicente es_ES
dc.contributor.author Quesada, Rita es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2014-05-23T07:25:04Z
dc.date.issued 2012
dc.identifier.issn 0090-6964
dc.identifier.uri http://hdl.handle.net/10251/37698
dc.description.abstract Radiofrequency (RF) thermokeratoplasty uses RF currents to alter the curvature of the cornea by means of thermal lesions. An RF applicator which combined a microkeratome suction ring and a circular electrode was designed with the aim of creating circular thermal lesions in a predictable, uniform and safe way. An experimental study was conducted on ex vivo porcine eyes. A theoretical model was also designed. The experimental results showed a lesion depth of 34.2 ± 11.0% of corneal thickness at a constant voltage of 50 V up to roll-off (1000 X of impedance). With a voltage of 30 V for 30 s the mean depth was 36.8 ± 8.1%. The progress of electrical impedance throughout heating and lesion dimensions were used to compare the experimental and theoretical results. Both the impedance evolution and lesion dimensions obtained from the theoretical model showed good agreement with the experimental ¿ndings. The ¿ndings suggest that the new applicator could be a suitable option for creating uniform circular thermal lesions. es_ES
dc.description.sponsorship This work received financial support from the Spanish "Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion" Grant No. TEC2008-01369/TEC and FEDER Project MTM2010-14909. The translation of this paper was partially funded by the Universitat Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Annals of Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Conductive keratoplasty es_ES
dc.subject Cornea es_ES
dc.subject Ex vivo experiments es_ES
dc.subject Ophthalmology es_ES
dc.subject Radiofrequency heating es_ES
dc.subject Theoretical modeling es_ES
dc.subject Thermokeratoplasty es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10439-011-0492-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-01369/ES/MODELOS COMPUTACIONALES E INVESTIGACION EXPERIMENTAL EN EL ESTUDIO DE TECNICAS QUIRURGICAS DE CALENTAMIENTO DE TEJIDOS BIOLOGICOS MEDIANTE CORRIENTES DE RADIOFRECUENCIA./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Trujillo Guillen, M.; Ribera, V.; Quesada, R.; Berjano, E. (2012). Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments. Annals of Biomedical Engineering. 40(5):1182-1191. https://doi.org/10.1007/s10439-011-0492-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10439-011-0492-1 es_ES
dc.description.upvformatpinicio 1182 es_ES
dc.description.upvformatpfin 1191 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 40 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 235498
dc.description.references Abraham, J. P., and E. M. Sparrow. A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. Int. J. Heat Mass Transf. 50:2537–2544, 2007. es_ES
dc.description.references Alió, J. L., M. I. Ramzy, A. Galal, and P. J. Claramonte. Conductive keratoplasty for the correction of residual hyperopia after LASIK. J. Refract. Surg. 21:698–704, 2005. es_ES
dc.description.references Arata, M. A., H. L. Nisenbaum, T. W. Clark, and M. C. Soulen. Percutaneous radiofrequency ablation of liver tumors with the LeVeen probe: Is roll-off predictive of response? J. Vasc. Interv. Radiol. 12:455–458, 2001. es_ES
dc.description.references Berjano, E. J. Theoretical modeling for radiofrequency ablation: state of-the-art and challenges for the future. Biomed. Eng. Online 5:24, 2006. es_ES
dc.description.references Berjano, E. J., J. L. Alió, and J. Saiz. Modeling for radio-frequency conductive keratoplasty: implications for the maximum temperature reached in the cornea. Physiol. Meas. 26:157–172, 2005. es_ES
dc.description.references Berjano, E. J., F. Burdío, A. C. Navarro, J. M. Burdío, A. Güemes, O. Aldana, P. Ros, R. Sousa, R. Lozano, E. Tejero, and M. A. de Gregorio. Improved perfusion system for bipolar radiofrequency ablation of liver. Physiol. Meas. 27:N55–N66, 2006. es_ES
dc.description.references Berjano, E. J., E. Navarro, V. Ribera, J. Gorris, and J. L. Alió. Radiofrequency heating of the cornea: an engineering review of electrodes and applicators. Open Biomed. Eng. J. 1:71–76, 2007. es_ES
dc.description.references Berjano, E. J., J. Saiz, J. L. Alió, and J. M. Ferrero. Ring electrode for radio-frequency heating of the cornea: modelling and in vitro experiments. Med. Biol. Eng. Comput. 41:630–639, 2003. es_ES
dc.description.references Berjano, E. J., J. Saiz, and J. M. Ferrero. Radio-frequency heating of the cornea: theoretical model and in vitro experiments. IEEE Trans. Biomed. Eng. 49:196–205, 2002. es_ES
dc.description.references Bischof, J. C., and X. He. Thermal stability of proteins. Ann. N. Y. Acad. Sci. 1066:12–33, 2005. es_ES
dc.description.references Doss, J. D., and J. I. Albillar. A technique for the selective heating of corneal stroma. Contact Intraocular Lens Med. 6:13–17, 1980. es_ES
dc.description.references Ehrlich, J. S., and E. E. Manche. Regression of effect over long-term follow-up of conductive keratoplasty to correct mild to moderate hyperopia. J. Cataract Refract. Surg. 35:1591–1596, 2009. es_ES
dc.description.references Gruenberg, P., W. Manning, D. Miller, and W. Olson. Increase in rabbit corneal curvature by heated ring application. Ann. Ophthalmol. 13:67–70, 1981. es_ES
dc.description.references Haines, D. E., D. D. Watson, and A. F. Verow. Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model. Circ. Res. 67:124–129, 1990. es_ES
dc.description.references Henriques, F. C. Studies of thermal injury. Arch. Pathol. 5:489–502, 1947. es_ES
dc.description.references Jo, B., and A. Aksan. Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. J. Therm. Biol. 35:167–174, 2010. es_ES
dc.description.references Kymionis, G. D., P. Titze, M. M. Markomanolakis, I. M. Aslanides, and I. G. Pallikaris. Corneal perforation after conductive keratoplasty with previous refractive surgery. J. Cataract Refract. Surg. 29:2452–2454, 2003. es_ES
dc.description.references Miller, D., and W. J. Manning. Alterations in curvature of bovine cornea using heated rings. Invest. Ophthalmol. 297, 1978. es_ES
dc.description.references Miller, M. W., and M. C. Ziskin. Biological consequences of hyperthermia. Ultrasound Med. Biol. 15:702–722, 1989. es_ES
dc.description.references Moshirfar, M., M. Feilmeier, and R. Kumar. Anterior chamber inflammation induced by conductive keratoplasty. J. Cataract Refract. Surg. 31:1676–1677, 2005. es_ES
dc.description.references Ou, J. I., and E. E. Manche. Corneal perforation after conductive keratoplasty in a patient with previously undiagnosed Sjögren syndrome. Arch. Ophthalmol. 125:1131–1132, 2007. es_ES
dc.description.references Pallikaris, I. G., T. L. Naoumidi, and N. I. Astyrakakis. Long-term results of conductive keratoplasty for low to moderate hyperopia. J. Cataract Refract. Surg. 31:1520–1529, 2005. es_ES
dc.description.references Pearce, J., D. Panescu, and S. S. Thomsen. Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea. WIT Trans. Biomed. Health 8:469–477, 2005. es_ES
dc.description.references Stahl, J. E. Conductive keratoplasty for presbyopia: 3-year results. J. Refract. Surg. 23:905–910, 2007. es_ES
dc.description.references Thomsen, S., J. A. Pearce, and W. F. Cheong. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans. Biomed. Eng. 36:1174–1179, 1989. es_ES
dc.description.references Trembly, B. S., N. Hashizume, K. L. Moodie, K. L. Cohen, N. K. Tripoli, and P. J. Hoopes. Microwave thermal keratoplasty for myopia: keratoscopic evaluation in porcine eyes. J. Refract. Surg. 17:682–688, 2001. es_ES
dc.description.references Xu, W., P. Ye, K. Yao, J. Ma, and H. Xu. Conductive keratoplasty for the treatment of astigmatism induced by corneal trauma or incision. J. Refract. Surg. 26:33–42, 2010. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem