Mostrar el registro sencillo del ítem
dc.contributor.author | Trujillo Guillen, Macarena | es_ES |
dc.contributor.author | Ribera, Vicente | es_ES |
dc.contributor.author | Quesada, Rita | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2014-05-23T07:25:04Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0090-6964 | |
dc.identifier.uri | http://hdl.handle.net/10251/37698 | |
dc.description.abstract | Radiofrequency (RF) thermokeratoplasty uses RF currents to alter the curvature of the cornea by means of thermal lesions. An RF applicator which combined a microkeratome suction ring and a circular electrode was designed with the aim of creating circular thermal lesions in a predictable, uniform and safe way. An experimental study was conducted on ex vivo porcine eyes. A theoretical model was also designed. The experimental results showed a lesion depth of 34.2 ± 11.0% of corneal thickness at a constant voltage of 50 V up to roll-off (1000 X of impedance). With a voltage of 30 V for 30 s the mean depth was 36.8 ± 8.1%. The progress of electrical impedance throughout heating and lesion dimensions were used to compare the experimental and theoretical results. Both the impedance evolution and lesion dimensions obtained from the theoretical model showed good agreement with the experimental ¿ndings. The ¿ndings suggest that the new applicator could be a suitable option for creating uniform circular thermal lesions. | es_ES |
dc.description.sponsorship | This work received financial support from the Spanish "Plan Nacional de I+D+I del Ministerio de Ciencia e Innovacion" Grant No. TEC2008-01369/TEC and FEDER Project MTM2010-14909. The translation of this paper was partially funded by the Universitat Politecnica de Valencia, Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Annals of Biomedical Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Conductive keratoplasty | es_ES |
dc.subject | Cornea | es_ES |
dc.subject | Ex vivo experiments | es_ES |
dc.subject | Ophthalmology | es_ES |
dc.subject | Radiofrequency heating | es_ES |
dc.subject | Theoretical modeling | es_ES |
dc.subject | Thermokeratoplasty | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/s10439-011-0492-1 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-01369/ES/MODELOS COMPUTACIONALES E INVESTIGACION EXPERIMENTAL EN EL ESTUDIO DE TECNICAS QUIRURGICAS DE CALENTAMIENTO DE TEJIDOS BIOLOGICOS MEDIANTE CORRIENTES DE RADIOFRECUENCIA./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Trujillo Guillen, M.; Ribera, V.; Quesada, R.; Berjano, E. (2012). Applicator for RF Thermokeratoplasty: Feasibility Study Using Theoretical Modeling and Ex Vivo Experiments. Annals of Biomedical Engineering. 40(5):1182-1191. https://doi.org/10.1007/s10439-011-0492-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10439-011-0492-1 | es_ES |
dc.description.upvformatpinicio | 1182 | es_ES |
dc.description.upvformatpfin | 1191 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 40 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 235498 | |
dc.description.references | Abraham, J. P., and E. M. Sparrow. A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. Int. J. Heat Mass Transf. 50:2537–2544, 2007. | es_ES |
dc.description.references | Alió, J. L., M. I. Ramzy, A. Galal, and P. J. Claramonte. Conductive keratoplasty for the correction of residual hyperopia after LASIK. J. Refract. Surg. 21:698–704, 2005. | es_ES |
dc.description.references | Arata, M. A., H. L. Nisenbaum, T. W. Clark, and M. C. Soulen. Percutaneous radiofrequency ablation of liver tumors with the LeVeen probe: Is roll-off predictive of response? J. Vasc. Interv. Radiol. 12:455–458, 2001. | es_ES |
dc.description.references | Berjano, E. J. Theoretical modeling for radiofrequency ablation: state of-the-art and challenges for the future. Biomed. Eng. Online 5:24, 2006. | es_ES |
dc.description.references | Berjano, E. J., J. L. Alió, and J. Saiz. Modeling for radio-frequency conductive keratoplasty: implications for the maximum temperature reached in the cornea. Physiol. Meas. 26:157–172, 2005. | es_ES |
dc.description.references | Berjano, E. J., F. Burdío, A. C. Navarro, J. M. Burdío, A. Güemes, O. Aldana, P. Ros, R. Sousa, R. Lozano, E. Tejero, and M. A. de Gregorio. Improved perfusion system for bipolar radiofrequency ablation of liver. Physiol. Meas. 27:N55–N66, 2006. | es_ES |
dc.description.references | Berjano, E. J., E. Navarro, V. Ribera, J. Gorris, and J. L. Alió. Radiofrequency heating of the cornea: an engineering review of electrodes and applicators. Open Biomed. Eng. J. 1:71–76, 2007. | es_ES |
dc.description.references | Berjano, E. J., J. Saiz, J. L. Alió, and J. M. Ferrero. Ring electrode for radio-frequency heating of the cornea: modelling and in vitro experiments. Med. Biol. Eng. Comput. 41:630–639, 2003. | es_ES |
dc.description.references | Berjano, E. J., J. Saiz, and J. M. Ferrero. Radio-frequency heating of the cornea: theoretical model and in vitro experiments. IEEE Trans. Biomed. Eng. 49:196–205, 2002. | es_ES |
dc.description.references | Bischof, J. C., and X. He. Thermal stability of proteins. Ann. N. Y. Acad. Sci. 1066:12–33, 2005. | es_ES |
dc.description.references | Doss, J. D., and J. I. Albillar. A technique for the selective heating of corneal stroma. Contact Intraocular Lens Med. 6:13–17, 1980. | es_ES |
dc.description.references | Ehrlich, J. S., and E. E. Manche. Regression of effect over long-term follow-up of conductive keratoplasty to correct mild to moderate hyperopia. J. Cataract Refract. Surg. 35:1591–1596, 2009. | es_ES |
dc.description.references | Gruenberg, P., W. Manning, D. Miller, and W. Olson. Increase in rabbit corneal curvature by heated ring application. Ann. Ophthalmol. 13:67–70, 1981. | es_ES |
dc.description.references | Haines, D. E., D. D. Watson, and A. F. Verow. Electrode radius predicts lesion radius during radiofrequency energy heating. Validation of a proposed thermodynamic model. Circ. Res. 67:124–129, 1990. | es_ES |
dc.description.references | Henriques, F. C. Studies of thermal injury. Arch. Pathol. 5:489–502, 1947. | es_ES |
dc.description.references | Jo, B., and A. Aksan. Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. J. Therm. Biol. 35:167–174, 2010. | es_ES |
dc.description.references | Kymionis, G. D., P. Titze, M. M. Markomanolakis, I. M. Aslanides, and I. G. Pallikaris. Corneal perforation after conductive keratoplasty with previous refractive surgery. J. Cataract Refract. Surg. 29:2452–2454, 2003. | es_ES |
dc.description.references | Miller, D., and W. J. Manning. Alterations in curvature of bovine cornea using heated rings. Invest. Ophthalmol. 297, 1978. | es_ES |
dc.description.references | Miller, M. W., and M. C. Ziskin. Biological consequences of hyperthermia. Ultrasound Med. Biol. 15:702–722, 1989. | es_ES |
dc.description.references | Moshirfar, M., M. Feilmeier, and R. Kumar. Anterior chamber inflammation induced by conductive keratoplasty. J. Cataract Refract. Surg. 31:1676–1677, 2005. | es_ES |
dc.description.references | Ou, J. I., and E. E. Manche. Corneal perforation after conductive keratoplasty in a patient with previously undiagnosed Sjögren syndrome. Arch. Ophthalmol. 125:1131–1132, 2007. | es_ES |
dc.description.references | Pallikaris, I. G., T. L. Naoumidi, and N. I. Astyrakakis. Long-term results of conductive keratoplasty for low to moderate hyperopia. J. Cataract Refract. Surg. 31:1520–1529, 2005. | es_ES |
dc.description.references | Pearce, J., D. Panescu, and S. S. Thomsen. Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea. WIT Trans. Biomed. Health 8:469–477, 2005. | es_ES |
dc.description.references | Stahl, J. E. Conductive keratoplasty for presbyopia: 3-year results. J. Refract. Surg. 23:905–910, 2007. | es_ES |
dc.description.references | Thomsen, S., J. A. Pearce, and W. F. Cheong. Changes in birefringence as markers of thermal damage in tissues. IEEE Trans. Biomed. Eng. 36:1174–1179, 1989. | es_ES |
dc.description.references | Trembly, B. S., N. Hashizume, K. L. Moodie, K. L. Cohen, N. K. Tripoli, and P. J. Hoopes. Microwave thermal keratoplasty for myopia: keratoscopic evaluation in porcine eyes. J. Refract. Surg. 17:682–688, 2001. | es_ES |
dc.description.references | Xu, W., P. Ye, K. Yao, J. Ma, and H. Xu. Conductive keratoplasty for the treatment of astigmatism induced by corneal trauma or incision. J. Refract. Surg. 26:33–42, 2010. | es_ES |