Mostrar el registro sencillo del ítem
dc.contributor.author | Molina Puerto, Javier | es_ES |
dc.contributor.author | Oliveira, F. R. | es_ES |
dc.contributor.author | Souto, A. P. | es_ES |
dc.contributor.author | Esteves, M. F. | es_ES |
dc.contributor.author | Bonastre Cano, José Antonio | es_ES |
dc.contributor.author | Cases Iborra, Francisco Javier | es_ES |
dc.date.accessioned | 2014-05-26T11:59:33Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0021-8995 | |
dc.identifier.uri | http://hdl.handle.net/10251/37759 | |
dc.description.abstract | [EN] Polyester fabrics have been treated with plasma to increase polypyrrole/PW12O403-(hybrid material) adhesion to its surface. With the plasma treatment, the roughness of the fibers increases as it has been observed by means of atomic force microscopy (AFM). Polar functional groups are also created on the surface of polyester fabrics as Xray photoelectron spectroscopy (XPS) measurements have shown. These polar groups contribute to the adhesion of polypyrrole to the fibers. Coatings obtained on plasma treated fabrics were more resistant to washing and rubbing fastness tests. The use of an inorganic counter ion (PW12O40 3-) that contains an element with a high atomic number (W) helps to locate zones where the coating is missed; this is achieved by means of micrographs obtained by backscattered electrons (BSE). The electrical resistance of the fabrics was also measured by electrochemical impedance spectroscopy (EIS), obtaining also better results with the plasma treated fabrics. | es_ES |
dc.description.sponsorship | Authors thank to the Spanish Ministerio de Ciencia e Innovacion (contracts CTM2010-18842-C02-02 and CTM2011-23583) and Universitat Politecnica de Valencia (Primeros Proyectos de Investigacion (PAID-06-10)) for the financial support. J. Molina is grateful to the Conselleria d'Educacio (Generalitat Valenciana) for the FPI fellowship. | |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Journal of Applied Polymer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Coatings | es_ES |
dc.subject | Conducting polymers | es_ES |
dc.subject | Electrochemistry | es_ES |
dc.subject | Plasma treatment | es_ES |
dc.subject | Adhesion | es_ES |
dc.subject | Polypyrrole | es_ES |
dc.subject.classification | QUIMICA FISICA | es_ES |
dc.title | Enhanced adhesion of polypyrrole/PW12O403- hybrid coatings on polyester fabrics | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/APP.38652 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2010-18842-C02-02/ES/TRATAMIENTO ELECTROQUIMICO DE DISOLUCIONES DE COLORANTES REACTIVOS EMPLEADOS EN LA INDUSTRIA TEXTIL Y DESARROLLO DE NUEVOS MATERIALES ELECTRODICOS./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2011-23583/ES/DESARROLLO DE NUEVOS MATERIALES ELECTRODICOS BASADOS EN RECUBRIMIENTOS DE ICP Y PT, CON APLICACION EN EL TRATAMIENTO ELECTROQUIMICO DE AGUAS RESIDUALES TEXTILES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-10/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera | es_ES |
dc.description.bibliographicCitation | Molina Puerto, J.; Oliveira, FR.; Souto, AP.; Esteves, MF.; Bonastre Cano, JA.; Cases Iborra, FJ. (2013). Enhanced adhesion of polypyrrole/PW12O403- hybrid coatings on polyester fabrics. Journal of Applied Polymer Science. 129(1):422-433. https://doi.org/10.1002/APP.38652 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/APP.38652 | es_ES |
dc.description.upvformatpinicio | 422 | es_ES |
dc.description.upvformatpfin | 433 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 129 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 237775 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Lekpittaya, P., Yanumet, N., Grady, B. P., & O’Rear, E. A. (2004). Resistivity of conductive polymer-coated fabric. Journal of Applied Polymer Science, 92(4), 2629-2636. doi:10.1002/app.20270 | es_ES |
dc.description.references | Kincal, D., Kumar, A., Child, A. D., & Reynolds, J. R. (1998). Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synthetic Metals, 92(1), 53-56. doi:10.1016/s0379-6779(98)80022-2 | es_ES |
dc.description.references | Wu, J., Zhou, D., Too, C. O., & Wallace, G. G. (2005). Conducting polymer coated lycra. Synthetic Metals, 155(3), 698-701. doi:10.1016/j.synthmet.2005.08.032 | es_ES |
dc.description.references | Oh, K. W., Park, H. J., & Kim, S. H. (2003). Stretchable conductive fabric for electrotherapy. Journal of Applied Polymer Science, 88(5), 1225-1229. doi:10.1002/app.11783 | es_ES |
dc.description.references | Kim, S. H., Oh, K. W., & Bahk, J. H. (2004). Electrochemically synthesized polypyrrole and Cu-plated nylon/spandex for electrotherapeutic pad electrode. Journal of Applied Polymer Science, 91(6), 4064-4071. doi:10.1002/app.13625 | es_ES |
dc.description.references | Bhat, N. V., Seshadri, D. T., Nate, M. M., & Gore, A. V. (2006). Development of conductive cotton fabrics for heating devices. Journal of Applied Polymer Science, 102(5), 4690-4695. doi:10.1002/app.24708 | es_ES |
dc.description.references | Hakansson, E., Kaynak, A., Lin, T., Nahavandi, S., Jones, T., & Hu, E. (2004). Characterization of conducting polymer coated synthetic fabrics for heat generation. Synthetic Metals, 144(1), 21-28. doi:10.1016/j.synthmet.2004.01.003 | es_ES |
dc.description.references | Boutrois, J. P., Jolly, R., & Pétrescu, C. (1997). Process of polypyrrole deposit on textile. Product characteristics and applications. Synthetic Metals, 85(1-3), 1405-1406. doi:10.1016/s0379-6779(97)80294-9 | es_ES |
dc.description.references | Kuhn, H. H., Child, A. D., & Kimbrell, W. C. (1995). Toward real applications of conductive polymers. Synthetic Metals, 71(1-3), 2139-2142. doi:10.1016/0379-6779(94)03198-f | es_ES |
dc.description.references | Oh, K. W., Kim, S. H., & Kim, E. A. (2001). Improved surface characteristics and the conductivity of polyaniline-nylon 6 fabrics by plasma treatment. Journal of Applied Polymer Science, 81(3), 684-694. doi:10.1002/app.1485 | es_ES |
dc.description.references | Garg, S., Hurren, C., & Kaynak, A. (2007). Improvement of adhesion of conductive polypyrrole coating on wool and polyester fabrics using atmospheric plasma treatment. Synthetic Metals, 157(1), 41-47. doi:10.1016/j.synthmet.2006.12.004 | es_ES |
dc.description.references | Lin, S. P., Han, J. L., Yeh, J. T., Chang, F. C., & Hsieh, K. H. (2007). Surface modification and physical properties of various UHMWPE-fiber-reinforced modified epoxy composites. Journal of Applied Polymer Science, 104(1), 655-665. doi:10.1002/app.25735 | es_ES |
dc.description.references | Leroux, F., Campagne, C., Perwuelz, A., & Gengembre, L. (2009). Atmospheric air plasma treatment of polyester textile materials. Textile structure influence on surface oxidation and silicon resin adhesion. Surface and Coatings Technology, 203(20-21), 3178-3183. doi:10.1016/j.surfcoat.2009.03.045 | es_ES |
dc.description.references | Kan, C. ., Chan, K., Yuen, C. W. ., & Miao, M. . (1998). The effect of low-temperature plasma on the chrome dyeing of wool fibre. Journal of Materials Processing Technology, 82(1-3), 122-126. doi:10.1016/s0924-0136(98)00030-2 | es_ES |
dc.description.references | Lin, T., Wang, L., Wang, X., & Kaynak, A. (2005). Polymerising pyrrole on polyester textiles and controlling the conductivity through coating thickness. Thin Solid Films, 479(1-2), 77-82. doi:10.1016/j.tsf.2004.11.146 | es_ES |
dc.description.references | Ferrero, F., Napoli, L., Tonin, C., & Varesano, A. (2006). Pyrrole chemical polymerization on textiles: Kinetics and operating conditions. Journal of Applied Polymer Science, 102(5), 4121-4126. doi:10.1002/app.24149 | es_ES |
dc.description.references | Molina, J., del Río, A. I., Bonastre, J., & Cases, F. (2008). Chemical and electrochemical polymerisation of pyrrole on polyester textiles in presence of phosphotungstic acid. European Polymer Journal, 44(7), 2087-2098. doi:10.1016/j.eurpolymj.2008.04.007 | es_ES |
dc.description.references | Seung Lee, H., & Hong, J. (2000). Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability. Synthetic Metals, 113(1-2), 115-119. doi:10.1016/s0379-6779(00)00193-4 | es_ES |
dc.description.references | Gasana, E., Westbroek, P., Hakuzimana, J., De Clerck, K., Priniotakis, G., Kiekens, P., & Tseles, D. (2006). Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surface and Coatings Technology, 201(6), 3547-3551. doi:10.1016/j.surfcoat.2006.08.128 | es_ES |
dc.description.references | Dall’Acqua, L., Tonin, C., Varesano, A., Canetti, M., Porzio, W., & Catellani, M. (2006). Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synthetic Metals, 156(5-6), 379-386. doi:10.1016/j.synthmet.2005.12.021 | es_ES |
dc.description.references | Dall’Acqua, L., Tonin, C., Peila, R., Ferrero, F., & Catellani, M. (2004). Performances and properties of intrinsic conductive cellulose–polypyrrole textiles. Synthetic Metals, 146(2), 213-221. doi:10.1016/j.synthmet.2004.07.005 | es_ES |
dc.description.references | Complete textile glossary http://www.celaneseacetate.com/textile_glossary_filament_acetate.pdf 2012 | es_ES |
dc.description.references | Carneiro , N. Souto , A. P. Forster , F. Prinz , E. 2004 | es_ES |
dc.description.references | Cioffi, M. O. H., Voorwald, H. J. C., & Mota, R. P. (2003). Surface energy increase of oxygen-plasma-treated PET. Materials Characterization, 50(2-3), 209-215. doi:10.1016/s1044-5803(03)00094-9 | es_ES |
dc.description.references | Morent, R., De Geyter, N., Verschuren, J., De Clerck, K., Kiekens, P., & Leys, C. (2008). Non-thermal plasma treatment of textiles. Surface and Coatings Technology, 202(14), 3427-3449. doi:10.1016/j.surfcoat.2007.12.027 | es_ES |
dc.description.references | Ran, F., Nie, S., Zhao, W., Li, J., Su, B., Sun, S., & Zhao, C. (2011). Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone)–b-poly(methyl methacrylate)–b-poly(vinyl pyrrolidone). Acta Biomaterialia, 7(9), 3370-3381. doi:10.1016/j.actbio.2011.05.026 | es_ES |
dc.description.references | Oliveira, F. R., Souto, A. P., Carneiro, N., & Nascimento, J. H. O. (2010). Surface Modification on Polyamide 6.6 with Double Barrier Discharge (DBD) Plasma to Optimise Dyeing Process by Direct Dyes. Materials Science Forum, 636-637, 846-852. doi:10.4028/www.scientific.net/msf.636-637.846 | es_ES |
dc.description.references | Yip, J., Chan, K., Sin, K. M., & Lau, K. S. (2002). Study of physico-chemical surface treatments on dyeing properties of polyamides. Part 1: Effect of tetrafluoromethane low temperature plasma. Coloration Technology, 118(1), 26-30. doi:10.1111/j.1478-4408.2002.tb00133.x | es_ES |
dc.description.references | Jia, C., Chen, P., Li, B., Wang, Q., Lu, C., & Yu, Q. (2010). Effects of Twaron fiber surface treatment by air dielectric barrier discharge plasma on the interfacial adhesion in fiber reinforced composites. Surface and Coatings Technology, 204(21-22), 3668-3675. doi:10.1016/j.surfcoat.2010.04.049 | es_ES |
dc.description.references | Vander Wielen, L. C., Östenson, M., Gatenholm, P., & Ragauskas, A. J. (2006). Surface modification of cellulosic fibers using dielectric-barrier discharge. Carbohydrate Polymers, 65(2), 179-184. doi:10.1016/j.carbpol.2005.12.040 | es_ES |
dc.description.references | Wilson, D. J., Williams, R. L., & Pond, R. C. (2001). Plasma modification of PTFE surfaces. Part I: Surfaces immediately following plasma treatment. Surface and Interface Analysis, 31(5), 385-396. doi:10.1002/sia.1065 | es_ES |
dc.description.references | Lynch, J. B., Spence, P. D., Baker, D. E., & Postlethwaite, T. A. (1999). Atmospheric pressure plasma treatment of polyethylene via a pulse dielectric barrier discharge: Comparison using various gas compositions versus corona discharge in air. Journal of Applied Polymer Science, 71(2), 319-331. doi:10.1002/(sici)1097-4628(19990110)71:2<319::aid-app16>3.0.co;2-t | es_ES |
dc.description.references | De Geyter, N., Morent, R., & Leys, C. (2006). Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surface and Coatings Technology, 201(6), 2460-2466. doi:10.1016/j.surfcoat.2006.04.004 | es_ES |
dc.description.references | Feng, J., Wen, G., Huang, W., Kang, E.-T., & Neoh, K. G. (2006). Influence of oxygen plasma treatment on poly(ether sulphone) films. Polymer Degradation and Stability, 91(1), 12-20. doi:10.1016/j.polymdegradstab.2005.05.001 | es_ES |
dc.description.references | Romero, E., Molina, J., del Río, A. I., Bonastre, J., & Cases, F. (2011). Synthesis of PPy/PW12 O3-40 organic-inorganic hybrid material on polyester yarns and subsequent weaving to obtain conductive fabrics. Textile Research Journal, 81(14), 1427-1437. doi:10.1177/0040517511407379 | es_ES |
dc.description.references | Švorčík, V., Kolářová, K., Slepička, P., Macková, A., Novotná, M., & Hnatowicz, V. (2006). Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polymer Degradation and Stability, 91(6), 1219-1225. doi:10.1016/j.polymdegradstab.2005.09.007 | es_ES |
dc.description.references | Sanchis, M. R., Blanes, V., Blanes, M., Garcia, D., & Balart, R. (2006). Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment. European Polymer Journal, 42(7), 1558-1568. doi:10.1016/j.eurpolymj.2006.02.001 | es_ES |
dc.description.references | Textor, T., & Mahltig, B. (2010). A sol–gel based surface treatment for preparation of water repellent antistatic textiles. Applied Surface Science, 256(6), 1668-1674. doi:10.1016/j.apsusc.2009.09.091 | es_ES |
dc.description.references | Molina, J., Fernández, J., del Río, A. I., Bonastre, J., & Cases, F. (2011). Chemical, electrical and electrochemical characterization of hybrid organic/inorganic polypyrrole/PW12O403− coating deposited on polyester fabrics. Applied Surface Science, 257(23), 10056-10064. doi:10.1016/j.apsusc.2011.06.140 | es_ES |