Mostrar el registro sencillo del ítem
dc.contributor.author | Romero García, Vicente | es_ES |
dc.contributor.author | Picó Vila, Rubén | es_ES |
dc.contributor.author | Cebrecos Ruiz, Alejandro | es_ES |
dc.contributor.author | Sánchez Morcillo, Víctor José | es_ES |
dc.contributor.author | Staliünas, Kestutis | es_ES |
dc.date.accessioned | 2014-05-28T12:43:26Z | |
dc.date.available | 2014-05-28T12:43:26Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/10251/37845 | |
dc.description.abstract | We propose and experimentally demonstrate a mechanism of sound wave concentration based on soft reflections in chirped sonic crystals. The reported controlled field enhancement occurs at around particular (bright) planes in the crystal and is related to a progressive slowing down of the sound wave as it propagates along the material. At these bright planes, a substantial concentration of the energy (with a local increase up to 20 times) was obtained for a linear chirp and for frequencies around the first band gap. A simple couple mode theory is proposed that interprets and estimates the observed effects. Wave concentration energy can be applied to increase the efficiency of detectors and absorbers. | es_ES |
dc.description.sponsorship | The work was supported by Spanish Ministry of Science and Innovation and European Union FEDER through projects FIS2011-29734-C02-01 and -02 and GVA/2011/055. V. R.-G. is grateful for the support of post-doctoral contracts of the UPV CEI-01-11. K. S. acknowledges the grant of UPV PAID-02-01. We acknowledge the CTFAMA and the Sonic Crystal Technologies Research Group at UPV for the use of the anechoic chamber and the 3DReAMS, respectively. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chirped sonic crystals | es_ES |
dc.subject | Enhancement | es_ES |
dc.subject | Harvesting | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Enhancement of sound in chirped sonic crystals | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4793575 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//CEI-01-11/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-01/ES/CONTROL DE LA DIFRACCION DE LA LUZ EN MEDIOS MODULADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-02-01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2011-29734-C02-02/ES/CONTROL DE LA DIFRACCION DEL SONIDO EN MEDIOS MODULADOS: FOCALIZACION, FILTRADO ESPACIAL Y OTROS EFECTOS DE CONFORMACION DE HACES TRAS LA TRANSMISION Y REFLEXION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//GV%2F2011%2F055/ES/GV%2F2011%2F055/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.description.bibliographicCitation | Romero García, V.; Picó Vila, R.; Cebrecos Ruiz, A.; Sánchez Morcillo, VJ.; Staliünas, K. (2013). Enhancement of sound in chirped sonic crystals. Applied Physics Letters. 102(919):1-3. https://doi.org/10.1063/1.4793575 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4793575 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 3 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 102 | es_ES |
dc.description.issue | 919 | es_ES |
dc.relation.senia | 235640 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Kushwaha, M. S., Halevi, P., Dobrzynski, L., & Djafari-Rouhani, B. (1993). Acoustic band structure of periodic elastic composites. Physical Review Letters, 71(13), 2022-2025. doi:10.1103/physrevlett.71.2022 | es_ES |
dc.description.references | Martínez-Sala, R., Sancho, J., Sánchez, J. V., Gómez, V., Llinares, J., & Meseguer, F. (1995). Sound attenuation by sculpture. Nature, 378(6554), 241-241. doi:10.1038/378241a0 | es_ES |
dc.description.references | Zhang, X., & Liu, Z. (2004). Negative refraction of acoustic waves in two-dimensional phononic crystals. Applied Physics Letters, 85(2), 341-343. doi:10.1063/1.1772854 | es_ES |
dc.description.references | Lu, M.-H., Zhang, C., Feng, L., Zhao, J., Chen, Y.-F., Mao, Y.-W., … Ming, N.-B. (2007). Negative birefraction of acoustic waves in a sonic crystal. Nature Materials, 6(10), 744-748. doi:10.1038/nmat1987 | es_ES |
dc.description.references | Espinosa, V., Sánchez-Morcillo, V. J., Staliunas, K., Pérez-Arjona, I., & Redondo, J. (2007). Subdiffractive propagation of ultrasound in sonic crystals. Physical Review B, 76(14). doi:10.1103/physrevb.76.140302 | es_ES |
dc.description.references | Zhou, Y., Lu, M.-H., Feng, L., Ni, X., Chen, Y.-F., Zhu, Y.-Y., … Ming, N.-B. (2010). Acoustic Surface Evanescent Wave and its Dominant Contribution to Extraordinary Acoustic Transmission and Collimation of Sound. Physical Review Letters, 104(16). doi:10.1103/physrevlett.104.164301 | es_ES |
dc.description.references | Khelif, A., Deymier, P. A., Djafari-Rouhani, B., Vasseur, J. O., & Dobrzynski, L. (2003). Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency. Journal of Applied Physics, 94(3), 1308-1311. doi:10.1063/1.1557776 | es_ES |
dc.description.references | Picó, R., Sánchez-Morcillo, V. J., Pérez-Arjona, I., & Staliunas, K. (2012). Spatial filtering of sound beams by sonic crystals. Applied Acoustics, 73(4), 302-306. doi:10.1016/j.apacoust.2011.09.011 | es_ES |
dc.description.references | Cervera, F., Sanchis, L., Sánchez-Pérez, J. V., Martínez-Sala, R., Rubio, C., Meseguer, F., … Sánchez-Dehesa, J. (2001). Refractive Acoustic Devices for Airborne Sound. Physical Review Letters, 88(2). doi:10.1103/physrevlett.88.023902 | es_ES |
dc.description.references | Li, X.-F., Ni, X., Feng, L., Lu, M.-H., He, C., & Chen, Y.-F. (2011). Tunable Unidirectional Sound Propagation through a Sonic-Crystal-Based Acoustic Diode. Physical Review Letters, 106(8). doi:10.1103/physrevlett.106.084301 | es_ES |
dc.description.references | Cassan, E., Do, K.-V., Caer, C., Marris-Morini, D., & Vivien, L. (2011). Short-Wavelength Light Propagation in Graded Photonic Crystals. Journal of Lightwave Technology, 29(13), 1937-1943. doi:10.1109/jlt.2011.2151175 | es_ES |
dc.description.references | Kushwaha, M. S., Djafari-Rouhani, B., Dobrzynski, L., & Vasseur, J. O. (1998). Sonic stop-bands for cubic arrays of rigid inclusions in air. The European Physical Journal B, 3(2), 155-161. doi:10.1007/s100510050296 | es_ES |
dc.description.references | Psarobas, I. E., & Sigalas, M. M. (2002). Elastic band gaps in a fcc lattice of mercury spheres in aluminum. Physical Review B, 66(5). doi:10.1103/physrevb.66.052302 | es_ES |
dc.description.references | Wu, L.-Y., & Chen, L.-W. (2011). An acoustic bending waveguide designed by graded sonic crystals. Journal of Applied Physics, 110(11), 114507. doi:10.1063/1.3664856 | es_ES |
dc.description.references | Centeno, E., Cassagne, D., & Albert, J.-P. (2006). Mirage and superbending effect in two-dimensional graded photonic crystals. Physical Review B, 73(23). doi:10.1103/physrevb.73.235119 | es_ES |
dc.description.references | Shen, Y., Fu, J., & Yu, G. (2011). Rainbow trapping in one-dimensional chirped photonic crystals composed of alternating dielectric slabs. Physics Letters A, 375(43), 3801-3803. doi:10.1016/j.physleta.2011.08.023 | es_ES |
dc.description.references | Stockman, M. I. (2004). Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides. Physical Review Letters, 93(13). doi:10.1103/physrevlett.93.137404 | es_ES |
dc.description.references | Smolyaninova, V. N., Smolyaninov, I. I., Kildishev, A. V., & Shalaev, V. M. (2010). Experimental observation of the trapped rainbow. Applied Physics Letters, 96(21), 211121. doi:10.1063/1.3442501 | es_ES |
dc.description.references | Martin, P. A. (2006). Multiple Scattering. doi:10.1017/cbo9780511735110 | es_ES |
dc.description.references | Chen, Y.-Y., & Ye, Z. (2001). Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays. Physical Review E, 64(3). doi:10.1103/physreve.64.036616 | es_ES |
dc.description.references | Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2010). Evanescent modes in sonic crystals: Complex dispersion relation and supercell approximation. Journal of Applied Physics, 108(4), 044907. doi:10.1063/1.3466988 | es_ES |
dc.description.references | Gorishnyy, T., Ullal, C. K., Maldovan, M., Fytas, G., & Thomas, E. L. (2005). Hypersonic Phononic Crystals. Physical Review Letters, 94(11). doi:10.1103/physrevlett.94.115501 | es_ES |
dc.description.references | Hopkins, P. E., Reinke, C. M., Su, M. F., Olsson, R. H., Shaner, E. A., Leseman, Z. C., … El-Kady, I. (2011). Reduction in the Thermal Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning. Nano Letters, 11(1), 107-112. doi:10.1021/nl102918q | es_ES |