Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086
Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818
Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880
[+]
Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086
Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818
Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880
Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085
Thornton, P. D., & Heise, A. (2010). Highly Specific Dual Enzyme-Mediated Payload Release from Peptide-Coated Silica Particles. Journal of the American Chemical Society, 132(6), 2024-2028. doi:10.1021/ja9094439
Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d
Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d
Climent, E., Martínez-Máñez, R., Maquieira, Á., Sancenón, F., Marcos, M. D., Brun, E. M., … Amorós, P. (2012). Antibody-Capped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromo-Fluorogenic Detection of Finasteride. ChemistryOpen, 1(6), 251-259. doi:10.1002/open.201100008
Climent, E., Gröninger, D., Hecht, M., Walter, M. A., Martínez-Máñez, R., Weller, M. G., … Rurack, K. (2013). Selective, Sensitive, and Rapid Analysis with Lateral-Flow Assays Based on Antibody-Gated Dye-Delivery Systems: The Example of Triacetone Triperoxide. Chemistry - A European Journal, 19(13), 4117-4122. doi:10.1002/chem.201300031
Coll, C., Mondragón, L., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez-Payá, E. (2011). Enzyme-Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie International Edition, 50(9), 2138-2140. doi:10.1002/anie.201004133
Porta, F., Lamers, G. E. M., Zink, J. I., & Kros, A. (2011). Peptide modified mesoporous silica nanocontainers. Physical Chemistry Chemical Physics, 13(21), 9982. doi:10.1039/c0cp02959a
Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827
Zhang, Y., Yuan, Q., Chen, T., Zhang, X., Chen, Y., & Tan, W. (2012). DNA-Capped Mesoporous Silica Nanoparticles as an Ion-Responsive Release System to Determine the Presence of Mercury in Aqueous Solutions. Analytical Chemistry, 84(4), 1956-1962. doi:10.1021/ac202993p
Zhu, C.-L., Lu, C.-H., Song, X.-Y., Yang, H.-H., & Wang, X.-R. (2011). Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. Journal of the American Chemical Society, 133(5), 1278-1281. doi:10.1021/ja110094g
Özalp, V. C., & Schäfer, T. (2011). Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chemistry - A European Journal, 17(36), 9893-9896. doi:10.1002/chem.201101403
Gao, L., Cui, Y., He, Q., Yang, Y., Fei, J., & Li, J. (2011). Selective Recognition of Co-assembled Thrombin Aptamer and Docetaxel on Mesoporous Silica Nanoparticles against Tumor Cell Proliferation. Chemistry - A European Journal, 17(47), 13170-13174. doi:10.1002/chem.201101658
Fu, X. B., Qu, F., Li, N. B., & Luo, H. Q. (2012). A label-free thrombin binding aptamer as a probe for highly sensitive and selective detection of lead(ii) ions by a resonance Rayleigh scattering method. The Analyst, 137(5), 1097. doi:10.1039/c2an15980e
Holland, C. A., Henry, A. T., Whinna, H. C., & Church, F. C. (2000). Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Letters, 484(2), 87-91. doi:10.1016/s0014-5793(00)02131-1
Lamy, F., & Waugh, D. F. (1954). Transformation of Prothrombin into Thrombin. Physiological Reviews, 34(4), 722-729. doi:10.1152/physrev.1954.34.4.722
Shuman, M. A., & Majerus, P. W. (1976). The measurement of thrombin in clotting blood by radioimmunoassay. Journal of Clinical Investigation, 58(5), 1249-1258. doi:10.1172/jci108579
Zheng, J., Cheng, G.-F., He, P.-G., & Fang, Y.-Z. (2010). An aptamer-based assay for thrombin via structure switch based on gold nanoparticles and magnetic nanoparticles. Talanta, 80(5), 1868-1872. doi:10.1016/j.talanta.2009.10.036
Wang, Y., He, X., Wang, K., Ni, X., Su, J., & Chen, Z. (2011). Electrochemical detection of thrombin based on aptamer and ferrocenylhexanethiol loaded silica nanocapsules. Biosensors and Bioelectronics, 26(8), 3536-3541. doi:10.1016/j.bios.2011.01.041
He, P., Shen, L., Cao, Y., & Li, D. (2007). Ultrasensitive Electrochemical Detection of Proteins by Amplification of Aptamer−Nanoparticle Bio Bar Codes. Analytical Chemistry, 79(21), 8024-8029. doi:10.1021/ac070772e
Zhao, J., Zhang, Y., Li, H., Wen, Y., Fan, X., Lin, F., … Yao, S. (2011). Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer–AuNPs–HRP conjugates. Biosensors and Bioelectronics, 26(5), 2297-2303. doi:10.1016/j.bios.2010.09.056
Chen, C.-K., Huang, C.-C., & Chang, H.-T. (2010). Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay. Biosensors and Bioelectronics, 25(8), 1922-1927. doi:10.1016/j.bios.2010.01.005
Li, T., Wang, E., & Dong, S. (2008). G-quadruplex-based DNAzyme for facile colorimetric detection of thrombin. Chemical Communications, (31), 3654. doi:10.1039/b805565c
Chang, H., Tang, L., Wang, Y., Jiang, J., & Li, J. (2010). Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection. Analytical Chemistry, 82(6), 2341-2346. doi:10.1021/ac9025384
Edwards, K. A., Wang, Y., & Baeumner, A. J. (2010). Aptamer sandwich assays: human α-thrombin detection using liposome enhancement. Analytical and Bioanalytical Chemistry, 398(6), 2645-2654. doi:10.1007/s00216-010-3920-4
Yin, X.-B., Xin, Y.-Y., & Zhao, Y. (2009). Label-Free Electrochemiluminescent Aptasensor with Attomolar Mass Detection Limits Based on a Ru(phen)32+-Double-Strand DNA Composite Film Electrode. Analytical Chemistry, 81(22), 9299-9305. doi:10.1021/ac901609g
Fang, L., Lü, Z., Wei, H., & Wang, E. (2008). A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode. Analytica Chimica Acta, 628(1), 80-86. doi:10.1016/j.aca.2008.08.041
Wang, J., Shan, Y., Zhao, W.-W., Xu, J.-J., & Chen, H.-Y. (2011). Gold Nanoparticle Enhanced Electrochemiluminescence of CdS Thin Films for Ultrasensitive Thrombin Detection. Analytical Chemistry, 83(11), 4004-4011. doi:10.1021/ac200616g
Zhao, Q., Lu, X., Yuan, C.-G., Li, X.-F., & Le, X. C. (2009). Aptamer-Linked Assay for Thrombin Using Gold Nanoparticle Amplification and Inductively Coupled Plasma−Mass Spectrometry Detection. Analytical Chemistry, 81(17), 7484-7489. doi:10.1021/ac900961y
Hu, J., Zheng, P.-C., Jiang, J.-H., Shen, G.-L., Yu, R.-Q., & Liu, G.-K. (2009). Electrostatic Interaction Based Approach to Thrombin Detection by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 81(1), 87-93. doi:10.1021/ac801431m
Ding, C., Ge, Y., & Lin, J.-M. (2010). Aptamer based electrochemical assay for the determination of thrombin by using the amplification of the nanoparticles. Biosensors and Bioelectronics, 25(6), 1290-1294. doi:10.1016/j.bios.2009.10.017
Ding, C., Ge, Y., & Zhang, S. (2010). Electrochemical and Electrochemiluminescence Determination of Cancer Cells Based on Aptamers and Magnetic Beads. Chemistry - A European Journal, 16(35), 10707-10714. doi:10.1002/chem.201001173
Tennico, Y. H., Hutanu, D., Koesdjojo, M. T., Bartel, C. M., & Remcho, V. T. (2010). On-Chip Aptamer-Based Sandwich Assay for Thrombin Detection Employing Magnetic Beads and Quantum Dots. Analytical Chemistry, 82(13), 5591-5597. doi:10.1021/ac101269u
Martínez, M. T., Tseng, Y.-C., Ormategui, N., Loinaz, I., Eritja, R., & Bokor, J. (2009). Label-Free DNA Biosensors Based on Functionalized Carbon Nanotube Field Effect Transistors. Nano Letters, 9(2), 530-536. doi:10.1021/nl8025604
Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992). Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature, 355(6360), 564-566. doi:10.1038/355564a0
Bode, W., Turk, D., & Karshikov, A. (2008). The refined 1.9-Å X-ray crystal structure of d-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: Structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Science, 1(4), 426-471. doi:10.1002/pro.5560010402
Stubbs, M. T., & Bode, W. (1993). A player of many parts: The spotlight falls on thrombin’s structure. Thrombosis Research, 69(1), 1-58. doi:10.1016/0049-3848(93)90002-6
Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847
Marques, M. R. C., Loebenberg, R., & Almukainzi, M. (2011). Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technologies, 18(3), 15-28. doi:10.14227/dt180311p15
[-]