- -

A quantitative version of Krein's theorems for Fréchet spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A quantitative version of Krein's theorems for Fréchet spaces

Show full item record

Angosto Hernández, C.; Kakol, J.; Kubzdela, A.; López Pellicer, M. (2013). A quantitative version of Krein's theorems for Fréchet spaces. Archiv der Mathematik. 101(1):65-77. doi:10.1007/s00013-013-0513-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37911

Files in this item

Item Metadata

Title: A quantitative version of Krein's theorems for Fréchet spaces
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
For a Banach space E and its bidual space E'', the function k(H) defined on bounded subsets H of E measures how far H is from being σ(E,E')-relatively compact in E. This concept, introduced independently by Granero, ...[+]
Subjects: Krein's theorem , Compactness , Fréchet space , Space of continuous functions
Copyrigths: Reserva de todos los derechos
Source:
Archiv der Mathematik. (issn: 0003-889X )
DOI: 10.1007/s00013-013-0513-4
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/content/pdf/10.1007%2Fs00013-013-0513-4.pdf
Thanks:
The research was supported for C. Angosto by the project MTM2008-05396 of the Spanish Ministry of Science and Innovation, for J. Kakol by National Center of Science, Poland, Grant No. N N201 605340, and for M. Lopez-Pellicer ...[+]
Type: Artículo

References

Angosto C., Cascales B.: Measures of weak noncompactness in Banach spaces. Topology Appl. 156, 1412–1421 (2009)

C. Angosto, Distance to spaces of functions, PhD thesis, Universidad de Murcia (2007).

C. Angosto and B. Cascales, A new look at compactness via distances to functions spaces, World Sc. Pub. Co. (2008). [+]
Angosto C., Cascales B.: Measures of weak noncompactness in Banach spaces. Topology Appl. 156, 1412–1421 (2009)

C. Angosto, Distance to spaces of functions, PhD thesis, Universidad de Murcia (2007).

C. Angosto and B. Cascales, A new look at compactness via distances to functions spaces, World Sc. Pub. Co. (2008).

Angosto C., Cascales B.: The quantitative difference between countable compactness and compactness. J. Math. Anal. Appl. 343, 479–491 (2008)

Angosto C., Cascales B., Namioka I.: Distances to spaces of Baire one functions. Math. Z. 263, 103–124 (2009)

C. Angosto, J. Ka̧kol, and M. López-Pellicer, A quantitative approach to weak compactness in Fréchet spaces and spaces C(X), J. Math. Anal. Appl. 403 (2013), 13–22.

Cascales B., Marciszesky W., Raja M.: Distance to spaces of continuous functions. Topology Appl. 153, 2303–2319 (2006)

M. Fabian et al. Functional Analysis and Infinite-dimensional geometry, CMS Books in Mathematics, Canadian Math. Soc., Springer (2001).

M. Fabian et al. A quantitative version of Krein’s theorem, Rev. Mat. Iberoam. 21 (2005), 237–248

Granero A. S.: An extension of the Krein-Smulian Theorem. Rev. Mat. Iberoam. 22, 93–110 (2006)

Granero A. S., Hájek P., Montesinos V.: Santalucía, Convexity and ω*-compactness in Banach spaces. Math. Ann. 328, 625–631 (2004)

Grothendieck A.: Criteres de compacité dans les spaces fonctionnelles généraux. Amer. J. Math. 74, 168–186 (1952)

Khurana S. S.: Weakly compactly generated Fréchet spaces. Int. J. Math. Math. Sci. 2, 721–724 (1979)

[-]

This item appears in the following Collection(s)

Show full item record