Angosto Hernández, C.; Kakol, J.; Kubzdela, A.; López Pellicer, M. (2013). A quantitative version of Krein's theorems for Fréchet spaces. Archiv der Mathematik. 101(1):65-77. https://doi.org/10.1007/s00013-013-0513-4
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37911
Title: | A quantitative version of Krein's theorems for Fréchet spaces | |
Author: | Angosto Hernández, Carlos Kakol, Jerzy Kubzdela, Albert | |
UPV Unit: |
|
|
Issued date: |
|
|
Abstract: |
For a Banach space E and its bidual space E'', the function k(H) defined on bounded
subsets H of E measures how far H is from being σ(E,E')-relatively compact in E. This concept, introduced independently by Granero, ...[+]
|
|
Subjects: |
|
|
Copyrigths: | Reserva de todos los derechos | |
Source: |
|
|
DOI: |
|
|
Publisher: |
|
|
Publisher version: | http://link.springer.com/content/pdf/10.1007%2Fs00013-013-0513-4.pdf | |
Project ID: |
|
|
Thanks: |
The research was supported for C. Angosto by the project MTM2008-05396 of the Spanish Ministry of Science and Innovation, for J. Kakol by National Center of Science, Poland, Grant No. N N201 605340, and for M. Lopez-Pellicer ...[+]
|
|
Type: |
|