- -

Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Climent Aunés, Laura Isabel es_ES
dc.contributor.author Wallace, Richard J. es_ES
dc.contributor.author Salido Gregorio, Miguel Angel es_ES
dc.contributor.author Barber Sanchís, Federico es_ES
dc.date.accessioned 2014-06-04T07:45:17Z
dc.date.issued 2013-08
dc.identifier.issn 0269-2821
dc.identifier.uri http://hdl.handle.net/10251/37912
dc.description.abstract Constraint programming is a paradigm wherein relations between variables are stated in the form of constraints. Many real life problems come from uncertain and dynamic environments, where the initial constraints and domains may change during its execution. Thus, the solution found for the problem may become invalid. The search forrobustsolutions for constraint satisfaction problems (CSPs) has become an important issue in the ¿eld of constraint programming. In some cases, there exists knowledge about the uncertain and dynamic environment. In other cases, this information is unknown or hard to obtain. In this paper, we consider CSPs with discrete and ordered domains where changes only involve restrictions or expansions of domains or constraints. To this end, we model CSPs as weighted CSPs (WCSPs) by assigning weights to each valid tuple of the problem constraints and domains. The weight of each valid tuple is based on its distance from the borders of the space of valid tuples in the corresponding constraint/domain. This distance is estimated by a new concept introduced in this paper: coverings. Thus, the best solution for the modeled WCSP can be considered as a most robust solution for the original CSP according to these assumptions es_ES
dc.description.sponsorship This work has been partially supported by the research projects TIN2010-20976-C02-01 (Min. de Ciencia e Innovacion, Spain) and P19/08 (Min. de Fomento, Spain-FEDER), and the fellowship program FPU. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Artificial Intelligence Review es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Robustness es_ES
dc.subject Uncertainty es_ES
dc.subject Dynamism · es_ES
dc.subject Dynamic constraint satisfaction problems (DynCSPs) es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10462-013-9420-0
dc.relation.projectID info:eu-repo/grantAgreement/MFOM//P19%2F08/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-01/ES/TECNICAS PARA LA EVALUACION Y OBTENCION DE SOLUCIONES ESTABLES Y ROBUSTAS EN PROBLEMAS DE OPTIMIZACION Y SATISFACCION DE RESTRICCIONES/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Climent Aunés, LI.; Wallace, RJ.; Salido Gregorio, MA.; Barber Sanchís, F. (2013). Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings. Artificial Intelligence Review. 1-26. https://doi.org/10.1007/s10462-013-9420-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/content/pdf/10.1007%2Fs10462-013-9420-0.pdf es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 249328
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Fomento
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Ministerio de Educación, Cultura y Deporte
dc.description.references Climent L, Salido M, Barber F (2011) Reformulating dynamic linear constraint satisfaction problems as weighted csps for searching robust solutions. In: Ninth symposium of abstraction, reformulation, and approximation (SARA-11), pp 34–41 es_ES
dc.description.references Dechter R, Dechter A (1988) Belief maintenance in dynamic constraint networks. In: Proceedings of the 7th national conference on, artificial intelligence (AAAI-88), pp 37–42 es_ES
dc.description.references Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49(1):61–95 es_ES
dc.description.references Fargier H, Lang J (1993) Uncertainty in constraint satisfaction problems: a probabilistic approach. In: Proceedings of the symbolic and quantitative approaches to reasoning and uncertainty (EC-SQARU-93), pp 97–104 es_ES
dc.description.references Fargier H, Lang J, Schiex T (1996) Mixed constraint satisfaction: a framework for decision problems under incomplete knowledge. In: Proceedings of the 13th national conference on, artificial intelligence, pp 175–180 es_ES
dc.description.references Fowler D, Brown K (2000) Branching constraint satisfaction problems for solutions robust under likely changes. In: Proceedings of the international conference on principles and practice of constraint programming (CP-2000), pp 500–504 es_ES
dc.description.references Goles E, Martínez S (1990) Neural and automata networks: dynamical behavior and applications. Kluwer Academic Publishers, Dordrecht es_ES
dc.description.references Hays W (1973) Statistics for the social sciences, vol 410, 2nd edn. Holt, Rinehart and Winston, New York es_ES
dc.description.references Hebrard E (2006) Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South Wales es_ES
dc.description.references Herrmann H, Schneider C, Moreira A, Andrade Jr J, Havlin S (2011) Onion-like network topology enhances robustness against malicious attacks. J Stat Mech Theory Exp 2011(1):P01,027 es_ES
dc.description.references Larrosa J, Schiex T (2004) Solving weighted CSP by maintaining arc consistency. Artif Intell 159:1–26 es_ES
dc.description.references Larrosa J, Meseguer P, Schiex T (1999) Maintaining reversible DAC for Max-CSP. J Artif Intell 107(1):149–163 es_ES
dc.description.references Mackworth A (1977) On reading sketch maps. In: Proceedings of IJCAI’77, pp 598–606 es_ES
dc.description.references Sam J (1995) Constraint consistency techniques for continuous domains. These de doctorat, École polytechnique fédérale de Lausanne es_ES
dc.description.references Schiex T, Fargier H, Verfaillie G (1995) Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the 14th international joint conference on, artificial intelligence (IJCAI-95), pp 631–637 es_ES
dc.description.references Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285 es_ES
dc.description.references Verfaillie G, Jussien N (2005) Constraint solving in uncertain and dynamic environments: a survey. Constraints 10(3):253–281 es_ES
dc.description.references Wallace R, Freuder E (1998) Stable solutions for dynamic constraint satisfaction problems. In: Proceedings of the 4th international conference on principles and practice of constraint programming (CP-98), pp 447–461 es_ES
dc.description.references Wallace RJ, Grimes D (2010) Problem-structure versus solution-based methods for solving dynamic constraint satisfaction problems. In: Proceedings of the 22nd international conference on tools with artificial intelligence (ICTAI-10), IEEE es_ES
dc.description.references Walsh T (2002) Stochastic constraint programming. In: Proceedings of the 15th European conference on, artificial intelligence (ECAI-02), pp 111–115 es_ES
dc.description.references William F (2006) Topology and its applications. Wiley, New York es_ES
dc.description.references Winer B (1971) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New York es_ES
dc.description.references Yorke-Smith N, Gervet C (2009) Certainty closure: reliable constraint reasoning with incomplete or erroneous data. J ACM Trans Comput Log (TOCL) 10(1):3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem