- -

New families of symplectic splitting methods for numerical integration in dynamical astronomy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

New families of symplectic splitting methods for numerical integration in dynamical astronomy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas Perez, Fernando es_ES
dc.contributor.author Farrés, Ariadna es_ES
dc.contributor.author Laskar, Jacques es_ES
dc.contributor.author Makazaga, Joseba es_ES
dc.contributor.author Murua, Ander es_ES
dc.date.accessioned 2014-06-10T15:49:24Z
dc.date.issued 2013-06
dc.identifier.issn 0168-9274
dc.identifier.uri http://hdl.handle.net/10251/38064
dc.description.abstract [EN] We present new splitting methods designed for the numerical integration of near-integrable Hamiltonian systems, and in particular for planetary N-body problems, when one is interested in very accurate results over a large time span. We derive in a systematic way an independent set of necessary and sufficient conditions to be satisfied by the coefficients of splitting methods to achieve a prescribed order of accuracy. Splitting methods satisfying such (generalized) order conditions are appropriate in particular for the numerical simulation of the Solar System described in Jacobi coordinates. We show that, when using Poincaré Heliocentric coordinates, the same order of accuracy may be obtained by imposing an additional polynomial equation on the coefficients of the splitting method. We construct several splitting methods appropriate for each of the two sets of coordinates by solving the corresponding systems of polynomial equations and finding the optimal solutions. The experiments reported here indicate that the efficiency of our new schemes is clearly superior to previous integrators when high accuracy is required.
dc.description.sponsorship The work of S.B., F.C., J.M. and A.M. has been partially supported by Ministerio de Ciencia e Innovacion (Spain) under project MTM2010-18246-C03 (co-financed by FEDER Funds of the European Union), whereas A.F. and J.L. acknowledge financial support by the FP7 GTSnext project. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Numerical Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Symplectic integrators
dc.subject Splitting methods
dc.subject Near-integrable systems
dc.subject N-body problems
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title New families of symplectic splitting methods for numerical integration in dynamical astronomy es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.apnum.2013.01.003 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/215458/EU/Towards the next generation of the Geological Time Scale for the last 100 million years – the European contribution to EARTHTIME/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Blanes Zamora, S.; Casas Perez, F.; Farrés, A.; Laskar, J.; Makazaga, J.; Murua, A. (2013). New families of symplectic splitting methods for numerical integration in dynamical astronomy. Applied Numerical Mathematics. 68:58-72. https://doi.org/10.1016/j.apnum.2013.01.003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.apnum.2013.01.003 es_ES
dc.description.upvformatpinicio 58 es_ES
dc.description.upvformatpfin 72 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 68 es_ES
dc.relation.senia 255337
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Commission
dc.contributor.funder European Regional Development Fund


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem