- -

High precision symplectic integrators for the Solar System

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High precision symplectic integrators for the Solar System

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Farrés, Ariadna es_ES
dc.contributor.author Laskar, Jacques es_ES
dc.contributor.author Blanes Zamora, Sergio es_ES
dc.contributor.author Casas Perez, Fernando es_ES
dc.contributor.author Makazaga, Joseba es_ES
dc.contributor.author Murua, Ander es_ES
dc.date.accessioned 2014-06-10T15:50:29Z
dc.date.issued 2013-06
dc.identifier.issn 0923-2958
dc.identifier.uri http://hdl.handle.net/10251/38065
dc.description.abstract Using a Newtonian model of the Solar System with all 8 planets, we perform extensive tests on various symplectic integrators of high orders, searching for the best splitting scheme for long term studies in the Solar System. These comparisons are made in Jacobi and heliocentric coordinates and the implementation of the algorithms is fully detailed for practical use. We conclude that high order integrators should be privileged, with a preference for the new (10, 6, 4) method of Blanes et al. (2013). © 2013 Springer Science+Business Media Dordrecht. es_ES
dc.description.sponsorship This work was supported by GTSNext project. The work of SB, FC, JM and AM has been partially supported by Ministerio de Ciencia e Innovacion (Spain) under project MTM2010-18246-C03 (co-financed by FEDER Funds of the European Union). en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Celestial Mechanics and Dynamical Astronomy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hamiltonian systems es_ES
dc.subject Heliocentric coordinates es_ES
dc.subject Jacobi coordinates es_ES
dc.subject Planetary motion es_ES
dc.subject Splitting sympletic methods es_ES
dc.subject Symplectic integrators es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title High precision symplectic integrators for the Solar System es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10569-013-9479-6
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-02/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/215458/EU/Towards the next generation of the Geological Time Scale for the last 100 million years – the European contribution to EARTHTIME/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-03/ES/TECNICAS ALGEBRAICAS EN INTEGRACION GEOMETRICA/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Farrés, A.; Laskar, J.; Blanes Zamora, S.; Casas Perez, F.; Makazaga, J.; Murua, A. (2013). High precision symplectic integrators for the Solar System. Celestial Mechanics and Dynamical Astronomy. 116:141-174. https://doi.org/10.1007/s10569-013-9479-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10569-013-9479-6 es_ES
dc.description.upvformatpinicio 141 es_ES
dc.description.upvformatpfin 174 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 116 es_ES
dc.relation.senia 255338
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder European Commission
dc.description.references Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Number. Math. (2013). doi: 10.1016/j.apnum.2013.01.003 es_ES
dc.description.references Candy, J., Rozmus, W.: A symplectic integration algorithm for separable hamiltonian functions. J. Comput. Phys. 92(1), 230–256 (1991) es_ES
dc.description.references Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Notices R. Astron. Soc. 304, 793–799 (1999) es_ES
dc.description.references Chambers, J.E., Murison, M.A.: Pseudo-high-order symplectic integrators. Astron. J. 119(1), 425 (2000) es_ES
dc.description.references Danby, J.M.A.: Fundamentals of Celestial Mechanics. 2nd Edition, revised and enlarged. XII, p. 484. Willmann-Bell, London (1992) es_ES
dc.description.references Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. Astrono. J. 116, 2067–2077 (1998) es_ES
dc.description.references Fienga, A., Laskar, J., Kuchynka, P., Manche, H., Desvignes, G., Gastineau, M., Cognard, I., Theureau, G.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363–385 (2011) es_ES
dc.description.references Gladman, B., Duncan, M.: On the fates of minor bodies in the outer solar system. Astron. J. 100, 1680–1693 (1990) es_ES
dc.description.references Goldman, D., Kaper, T.: $$N$$ th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996) es_ES
dc.description.references Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, 2nd edn. Springer, Berlin (2006) es_ES
dc.description.references Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun. ACM 8, 40 (1965) es_ES
dc.description.references Kinoshita, H., Yoshida, H., Nakai, H.: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991) es_ES
dc.description.references Koseleff, P.V.: Calcul formel pour les méthodes de lie en mécanique hamiltonienne. PhD thesis, Ecole Polytechnique (1993a) es_ES
dc.description.references Koseleff, P.V.: Relations among lie formal series and construction of symplectic integrators. In: Cohen, G. D., Mora, T., Moreno, O. (eds.) Applied Algebra, Algebraic Algorithms and Error Correcting Codes. 10th International symposium, (AAECC-10), San Juan de Puerto Rico, Puerto Rico, May 10–14, 1993, proceedings. Lect. Not. Comp. Sci, vol 673, pp. 213–230. Springer, New York (1993b) es_ES
dc.description.references Koseleff, P.V.: Exhaustive search of symplectic integrators using computer algebra. Integration algorithms and classical mechanics, Fields Inst. Commun. 10, 103–120 (1996) es_ES
dc.description.references Laskar, J.: A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237 (1989) es_ES
dc.description.references Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990a) es_ES
dc.description.references Laskar, J.: Les Méthodes Modernes de la Mecánique Céleste (Goutelas, France, 1989), Editions Frontières, chap Systèmes de Variables et Eléments, pp. 63–87 (1990b) es_ES
dc.description.references Laskar, J.: Analytical framework in poincaré variables for the motion of the solar system. In: Roy, A. (ed.) Predictability, Stability, and Chaos in N-Body Dynamical Systems, pp. 93–114. NATO, Plenum Press, ASI (1991) es_ES
dc.description.references Laskar, J., Robutel, P.: High order symplectic integrators for perturbed hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001) es_ES
dc.description.references Laskar, J., Quinn, T., Tremaine, S.: Confirmation of resonant structure in the solar system. Icarus 95, 148–152 (1992) es_ES
dc.description.references Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B.: A long-term numerical solution for the insolation quantities of the earth. Astron. Astrophys. 428, 261–285 (2004) es_ES
dc.description.references Laskar, J., Fienga, A., Gastineau, M., Manche, H.: La2010: a new orbital solution for the long-term motion of the earth. Astron. Astrophys. 532, 89 (2011a) es_ES
dc.description.references Laskar, J., Gastineau, M., Delisle, J.B., Farrés, A., Fienga, A.: Strong chaos induced by close encounters with ceres and vesta. Astron. Astrophys. 532, L4 (2011b) es_ES
dc.description.references Lourens, L. J., Hilgen, F. J., Shackleton, N. J., Laskar, J., Wilson, D.: The neogene period. In: Gradstein, F., Ogg, J., Smith, A. (eds.) A Geologic. Time scale, pp 409–440. Cambridge University Press, UK (2004) es_ES
dc.description.references McLachlan, R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995) es_ES
dc.description.references McLachlan, R.I.: Families of high-order composition methods. Numer. Algorithms 31, 233–246 (2002) es_ES
dc.description.references McLachlan, R., Quispel, R.: Splitting methods. Acta Numerica 11, 341–434 (2002) es_ES
dc.description.references Milankovitch, M.: Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Spec. Acad. R, Serbe, Belgrade (1941) es_ES
dc.description.references Morbidelli, A.: Modern integrations of solar system dynamics. Annu. Rev. Earth Planet. Sci. 30, 89–112 (2002) es_ES
dc.description.references Murua, A., Sanz-Serna, J.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1754), 1079–1100 (1999) es_ES
dc.description.references Quinn, T.R., Tremaine, S., Duncan, M.: A three million year integration of the earth’s orbit. Astron. J. 101, 2287–2305 (1991) es_ES
dc.description.references Saha, P., Tremaine, S.: Long-term planetary integration with individual time steps. Astron. J. 108, 1962–1969 (1994) es_ES
dc.description.references Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199–212 (1989) es_ES
dc.description.references Sussman, G.J., Wisdom, J.: Chaotic evolution of the solar system. Science 257, 56–62 (1992) es_ES
dc.description.references Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations. Phys. Lett. A 146(6), 319–323 (1990) es_ES
dc.description.references Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32(2), 400–407 (1991) es_ES
dc.description.references Touma, J., Wisdom, J.: Lie-poisson integrators for rigid body dynamics in the solar system. Astron. J. 107, 1189–1202 (1994) es_ES
dc.description.references Viswanath, D.: How many timesteps for a cycle? Analysis of the Wisdom–Holman algorithm. BIT Numer. Math. 42, 194–205 (2002) es_ES
dc.description.references Wisdom, J.: Symplectic correctors for canonical heliocentric n-body maps. Astron. J. 131(4), 2294 (2006) es_ES
dc.description.references Wisdom, J., Holman, M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991) es_ES
dc.description.references Wisdom, J., Holman, M., Touma, J.: Symplectic correctors. Fields Inst. Commun. 10, 217 (1996) es_ES
dc.description.references Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem