Mostrar el registro sencillo del ítem
dc.contributor.author | Farrés, Ariadna | es_ES |
dc.contributor.author | Laskar, Jacques | es_ES |
dc.contributor.author | Blanes Zamora, Sergio | es_ES |
dc.contributor.author | Casas Perez, Fernando | es_ES |
dc.contributor.author | Makazaga, Joseba | es_ES |
dc.contributor.author | Murua, Ander | es_ES |
dc.date.accessioned | 2014-06-10T15:50:29Z | |
dc.date.issued | 2013-06 | |
dc.identifier.issn | 0923-2958 | |
dc.identifier.uri | http://hdl.handle.net/10251/38065 | |
dc.description.abstract | Using a Newtonian model of the Solar System with all 8 planets, we perform extensive tests on various symplectic integrators of high orders, searching for the best splitting scheme for long term studies in the Solar System. These comparisons are made in Jacobi and heliocentric coordinates and the implementation of the algorithms is fully detailed for practical use. We conclude that high order integrators should be privileged, with a preference for the new (10, 6, 4) method of Blanes et al. (2013). © 2013 Springer Science+Business Media Dordrecht. | es_ES |
dc.description.sponsorship | This work was supported by GTSNext project. The work of SB, FC, JM and AM has been partially supported by Ministerio de Ciencia e Innovacion (Spain) under project MTM2010-18246-C03 (co-financed by FEDER Funds of the European Union). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Celestial Mechanics and Dynamical Astronomy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hamiltonian systems | es_ES |
dc.subject | Heliocentric coordinates | es_ES |
dc.subject | Jacobi coordinates | es_ES |
dc.subject | Planetary motion | es_ES |
dc.subject | Splitting sympletic methods | es_ES |
dc.subject | Symplectic integrators | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | High precision symplectic integrators for the Solar System | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/s10569-013-9479-6 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-02/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/215458/EU/Towards the next generation of the Geological Time Scale for the last 100 million years – the European contribution to EARTHTIME/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-03/ES/TECNICAS ALGEBRAICAS EN INTEGRACION GEOMETRICA/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Farrés, A.; Laskar, J.; Blanes Zamora, S.; Casas Perez, F.; Makazaga, J.; Murua, A. (2013). High precision symplectic integrators for the Solar System. Celestial Mechanics and Dynamical Astronomy. 116:141-174. https://doi.org/10.1007/s10569-013-9479-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10569-013-9479-6 | es_ES |
dc.description.upvformatpinicio | 141 | es_ES |
dc.description.upvformatpfin | 174 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 116 | es_ES |
dc.relation.senia | 255338 | |
dc.contributor.funder | European Regional Development Fund | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | European Commission | |
dc.description.references | Blanes, S., Casas, F., Farrés, A., Laskar, J., Makazaga, J., Murua, A.: New families of symplectic splitting methods for numerical integration in dynamical astronomy. Appl. Number. Math. (2013). doi: 10.1016/j.apnum.2013.01.003 | es_ES |
dc.description.references | Candy, J., Rozmus, W.: A symplectic integration algorithm for separable hamiltonian functions. J. Comput. Phys. 92(1), 230–256 (1991) | es_ES |
dc.description.references | Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Notices R. Astron. Soc. 304, 793–799 (1999) | es_ES |
dc.description.references | Chambers, J.E., Murison, M.A.: Pseudo-high-order symplectic integrators. Astron. J. 119(1), 425 (2000) | es_ES |
dc.description.references | Danby, J.M.A.: Fundamentals of Celestial Mechanics. 2nd Edition, revised and enlarged. XII, p. 484. Willmann-Bell, London (1992) | es_ES |
dc.description.references | Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close encounters. Astrono. J. 116, 2067–2077 (1998) | es_ES |
dc.description.references | Fienga, A., Laskar, J., Kuchynka, P., Manche, H., Desvignes, G., Gastineau, M., Cognard, I., Theureau, G.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363–385 (2011) | es_ES |
dc.description.references | Gladman, B., Duncan, M.: On the fates of minor bodies in the outer solar system. Astron. J. 100, 1680–1693 (1990) | es_ES |
dc.description.references | Goldman, D., Kaper, T.: $$N$$ th-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal. 33, 349–367 (1996) | es_ES |
dc.description.references | Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, 2nd edn. Springer, Berlin (2006) | es_ES |
dc.description.references | Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun. ACM 8, 40 (1965) | es_ES |
dc.description.references | Kinoshita, H., Yoshida, H., Nakai, H.: Symplectic integrators and their application to dynamical astronomy. Celest. Mech. Dyn. Astron. 50, 59–71 (1991) | es_ES |
dc.description.references | Koseleff, P.V.: Calcul formel pour les méthodes de lie en mécanique hamiltonienne. PhD thesis, Ecole Polytechnique (1993a) | es_ES |
dc.description.references | Koseleff, P.V.: Relations among lie formal series and construction of symplectic integrators. In: Cohen, G. D., Mora, T., Moreno, O. (eds.) Applied Algebra, Algebraic Algorithms and Error Correcting Codes. 10th International symposium, (AAECC-10), San Juan de Puerto Rico, Puerto Rico, May 10–14, 1993, proceedings. Lect. Not. Comp. Sci, vol 673, pp. 213–230. Springer, New York (1993b) | es_ES |
dc.description.references | Koseleff, P.V.: Exhaustive search of symplectic integrators using computer algebra. Integration algorithms and classical mechanics, Fields Inst. Commun. 10, 103–120 (1996) | es_ES |
dc.description.references | Laskar, J.: A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237 (1989) | es_ES |
dc.description.references | Laskar, J.: The chaotic motion of the solar system—a numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990a) | es_ES |
dc.description.references | Laskar, J.: Les Méthodes Modernes de la Mecánique Céleste (Goutelas, France, 1989), Editions Frontières, chap Systèmes de Variables et Eléments, pp. 63–87 (1990b) | es_ES |
dc.description.references | Laskar, J.: Analytical framework in poincaré variables for the motion of the solar system. In: Roy, A. (ed.) Predictability, Stability, and Chaos in N-Body Dynamical Systems, pp. 93–114. NATO, Plenum Press, ASI (1991) | es_ES |
dc.description.references | Laskar, J., Robutel, P.: High order symplectic integrators for perturbed hamiltonian systems. Celest. Mech. Dyn. Astron. 80, 39–62 (2001) | es_ES |
dc.description.references | Laskar, J., Quinn, T., Tremaine, S.: Confirmation of resonant structure in the solar system. Icarus 95, 148–152 (1992) | es_ES |
dc.description.references | Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B.: A long-term numerical solution for the insolation quantities of the earth. Astron. Astrophys. 428, 261–285 (2004) | es_ES |
dc.description.references | Laskar, J., Fienga, A., Gastineau, M., Manche, H.: La2010: a new orbital solution for the long-term motion of the earth. Astron. Astrophys. 532, 89 (2011a) | es_ES |
dc.description.references | Laskar, J., Gastineau, M., Delisle, J.B., Farrés, A., Fienga, A.: Strong chaos induced by close encounters with ceres and vesta. Astron. Astrophys. 532, L4 (2011b) | es_ES |
dc.description.references | Lourens, L. J., Hilgen, F. J., Shackleton, N. J., Laskar, J., Wilson, D.: The neogene period. In: Gradstein, F., Ogg, J., Smith, A. (eds.) A Geologic. Time scale, pp 409–440. Cambridge University Press, UK (2004) | es_ES |
dc.description.references | McLachlan, R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995) | es_ES |
dc.description.references | McLachlan, R.I.: Families of high-order composition methods. Numer. Algorithms 31, 233–246 (2002) | es_ES |
dc.description.references | McLachlan, R., Quispel, R.: Splitting methods. Acta Numerica 11, 341–434 (2002) | es_ES |
dc.description.references | Milankovitch, M.: Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Spec. Acad. R, Serbe, Belgrade (1941) | es_ES |
dc.description.references | Morbidelli, A.: Modern integrations of solar system dynamics. Annu. Rev. Earth Planet. Sci. 30, 89–112 (2002) | es_ES |
dc.description.references | Murua, A., Sanz-Serna, J.: Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1754), 1079–1100 (1999) | es_ES |
dc.description.references | Quinn, T.R., Tremaine, S., Duncan, M.: A three million year integration of the earth’s orbit. Astron. J. 101, 2287–2305 (1991) | es_ES |
dc.description.references | Saha, P., Tremaine, S.: Long-term planetary integration with individual time steps. Astron. J. 108, 1962–1969 (1994) | es_ES |
dc.description.references | Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199–212 (1989) | es_ES |
dc.description.references | Sussman, G.J., Wisdom, J.: Chaotic evolution of the solar system. Science 257, 56–62 (1992) | es_ES |
dc.description.references | Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations. Phys. Lett. A 146(6), 319–323 (1990) | es_ES |
dc.description.references | Suzuki, M.: General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32(2), 400–407 (1991) | es_ES |
dc.description.references | Touma, J., Wisdom, J.: Lie-poisson integrators for rigid body dynamics in the solar system. Astron. J. 107, 1189–1202 (1994) | es_ES |
dc.description.references | Viswanath, D.: How many timesteps for a cycle? Analysis of the Wisdom–Holman algorithm. BIT Numer. Math. 42, 194–205 (2002) | es_ES |
dc.description.references | Wisdom, J.: Symplectic correctors for canonical heliocentric n-body maps. Astron. J. 131(4), 2294 (2006) | es_ES |
dc.description.references | Wisdom, J., Holman, M.: Symplectic maps for the n-body problem. Astron. J. 102, 1528–1538 (1991) | es_ES |
dc.description.references | Wisdom, J., Holman, M., Touma, J.: Symplectic correctors. Fields Inst. Commun. 10, 217 (1996) | es_ES |
dc.description.references | Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A 150(5–7), 262–268 (1990) | es_ES |