- -

A system for automatic notification and severity estimation of automotive accidents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A system for automatic notification and severity estimation of automotive accidents

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fogue, Manuel es_ES
dc.contributor.author Garrido, Piedad es_ES
dc.contributor.author Martínez, Francisco J. es_ES
dc.contributor.author Cano Escribá, Juan Carlos es_ES
dc.contributor.author Tavares de Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2014-06-16T10:53:17Z
dc.date.issued 2014-05
dc.identifier.issn 1536-1233
dc.identifier.uri http://hdl.handle.net/10251/38164
dc.description © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract New communication technologies integrated into modern vehicles offer an opportunity for better assistance to people injured in traffic accidents. Recent studies show how communication capabilities should be supported by artificial intelligence systems capable of automating many of the decisions to be taken by emergency services, thereby adapting the rescue resources to the severity of the accident and reducing assistance time. To improve the overall rescue process, a fast and accurate estimation of the severity of the accident represent a key point to help emergency services better estimate the required resources. This paper proposes a novel intelligent system which is able to automatically detect road accidents, notify them through vehicular networks, and estimate their severity based on the concept of data mining and knowledge inference. Our system considers the most relevant variables that can characterize the severity of the accidents (variables such as the vehicle speed, the type of vehicles involved, the impact speed, and the status of the airbag). Results show that a complete Knowledge Discovery in Databases (KDD) process, with an adequate selection of relevant features, allows generating estimation models that can predict the severity of new accidents. We develop a prototype of our system based on off-the-shelf devices and validate it at the Applus+ IDIADA Automotive Research Corporation facilities, showing that our system can notably reduce the time needed to alert and deploy emergency services after an accident takes place. es_ES
dc.description.sponsorship This work was partially supported by the Ministerio de Ciencia e Innovacion, Spain, under Grant TIN2011-27543-C03- 01, and by the Diputacion General de Aragon, under Grant "subvenciones destinadas a la formacion y contratacion de personal investigador." en_EN
dc.format.extent 16 es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) es_ES
dc.relation Diputación General de Aragón, under Grant "subvenciones destinadas a la formación y contratación de personal investigador" es_ES
dc.relation.ispartof IEEE Transactions on Mobile Computing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject KDD es_ES
dc.subject Data Mining es_ES
dc.subject Vehicular Networks es_ES
dc.subject Traffic accidents assistance es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A system for automatic notification and severity estimation of automotive accidents es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1109/TMC.2013.35
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-27543-C03-01/ES/WALKIE-TALKIE: SOPORTE A ENTORNOS DE TRANSPORTE SEGURO, INTELIGENTE Y SOSTENIBLE PARA LA FUTURA GENERACION DE COCHES INTELIGENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Fogue, M.; Garrido, P.; Martínez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2014). A system for automatic notification and severity estimation of automotive accidents. IEEE Transactions on Mobile Computing. 13(5):948-963. https://doi.org/10.1109/TMC.2013.35 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6477047 es_ES
dc.description.upvformatpinicio 948 es_ES
dc.description.upvformatpfin 963 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 253220
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Diputación General de Aragón es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem