Mostrar el registro sencillo del ítem
dc.contributor.author | Fogue, Manuel | es_ES |
dc.contributor.author | Garrido, Piedad | es_ES |
dc.contributor.author | Martínez, Francisco J. | es_ES |
dc.contributor.author | Cano Escribá, Juan Carlos | es_ES |
dc.contributor.author | Tavares de Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.contributor.author | Manzoni, Pietro | es_ES |
dc.date.accessioned | 2014-06-16T10:53:17Z | |
dc.date.issued | 2014-05 | |
dc.identifier.issn | 1536-1233 | |
dc.identifier.uri | http://hdl.handle.net/10251/38164 | |
dc.description | © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | es_ES |
dc.description.abstract | New communication technologies integrated into modern vehicles offer an opportunity for better assistance to people injured in traffic accidents. Recent studies show how communication capabilities should be supported by artificial intelligence systems capable of automating many of the decisions to be taken by emergency services, thereby adapting the rescue resources to the severity of the accident and reducing assistance time. To improve the overall rescue process, a fast and accurate estimation of the severity of the accident represent a key point to help emergency services better estimate the required resources. This paper proposes a novel intelligent system which is able to automatically detect road accidents, notify them through vehicular networks, and estimate their severity based on the concept of data mining and knowledge inference. Our system considers the most relevant variables that can characterize the severity of the accidents (variables such as the vehicle speed, the type of vehicles involved, the impact speed, and the status of the airbag). Results show that a complete Knowledge Discovery in Databases (KDD) process, with an adequate selection of relevant features, allows generating estimation models that can predict the severity of new accidents. We develop a prototype of our system based on off-the-shelf devices and validate it at the Applus+ IDIADA Automotive Research Corporation facilities, showing that our system can notably reduce the time needed to alert and deploy emergency services after an accident takes place. | es_ES |
dc.description.sponsorship | This work was partially supported by the Ministerio de Ciencia e Innovacion, Spain, under Grant TIN2011-27543-C03- 01, and by the Diputacion General de Aragon, under Grant "subvenciones destinadas a la formacion y contratacion de personal investigador." | en_EN |
dc.format.extent | 16 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | es_ES |
dc.relation | Diputación General de Aragón, under Grant "subvenciones destinadas a la formación y contratación de personal investigador" | es_ES |
dc.relation.ispartof | IEEE Transactions on Mobile Computing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | KDD | es_ES |
dc.subject | Data Mining | es_ES |
dc.subject | Vehicular Networks | es_ES |
dc.subject | Traffic accidents assistance | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | A system for automatic notification and severity estimation of automotive accidents | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1109/TMC.2013.35 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2011-27543-C03-01/ES/WALKIE-TALKIE: SOPORTE A ENTORNOS DE TRANSPORTE SEGURO, INTELIGENTE Y SOSTENIBLE PARA LA FUTURA GENERACION DE COCHES INTELIGENTES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Fogue, M.; Garrido, P.; Martínez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2014). A system for automatic notification and severity estimation of automotive accidents. IEEE Transactions on Mobile Computing. 13(5):948-963. https://doi.org/10.1109/TMC.2013.35 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6477047 | es_ES |
dc.description.upvformatpinicio | 948 | es_ES |
dc.description.upvformatpfin | 963 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 253220 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Diputación General de Aragón | es_ES |