Mostrar el registro sencillo del ítem
dc.contributor.author | Climent Terol, Estela | es_ES |
dc.contributor.author | Mondragón Martínez, Laura | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Marcos Martínez, María Dolores | es_ES |
dc.contributor.author | Murguía Ibáñez, José Ramón | es_ES |
dc.contributor.author | AMOROS DEL TORO, PEDRO | es_ES |
dc.contributor.author | Rurack, Knut | es_ES |
dc.contributor.author | Pérez Payá, Enrique | es_ES |
dc.date.accessioned | 2014-06-18T10:17:45Z | |
dc.date.issued | 2013-08-19 | |
dc.identifier.issn | 1521-3757 | |
dc.identifier.uri | http://hdl.handle.net/10251/38208 | |
dc.description.abstract | [DE] Mit DNA verschlossene und mit Farbstoff beladene mesoporöse Siliciumdioxid-Nanopartikel wurden zum Nachweis von Mycoplasma bis zu einer Nachweisgrenze von ca. 70 genomischen DNA-Kopien pro mu-L in real kontaminierten Zellkulturmedien ohne die Hilfe von PCR-Techniken eingesetzt. | es_ES |
dc.description.sponsorship | Diese Arbeit wurde durch die Spanische Regierung (MAT2009-14564-C04-01 und SAF2010 15512) und die Generalitat Valenciana (PROMETEO/2009/016 und 2010/005) unterstützt. E.C. dankt dem Spanischen Bildungsministerium für ein Stipendium | |
dc.format.extent | 5 | es_ES |
dc.language | Alemán | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Angewandte Chemie | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Sonden | es_ES |
dc.subject | Mycoplasma | es_ES |
dc.subject | Mesoporöse Träger | es_ES |
dc.subject | Gesteuerte Materialien | es_ES |
dc.subject | DNA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Selektiver, hoch empfindlicher und schneller Nachweis genomischer DNA mit gesteuerten materialien am beispiel von Mycoplasma | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/ange.201302954 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F005/ES/Identificación de nuevas dianas terapéuticas en angiogénesis y apoptosis basadas en interacciones proteína-proteína/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Climent Terol, E.; Mondragón Martínez, L.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.; Murguía Ibáñez, JR.; Amoros Del Toro, P.... (2013). Selektiver, hoch empfindlicher und schneller Nachweis genomischer DNA mit gesteuerten materialien am beispiel von Mycoplasma. Angewandte Chemie. 125(34):9106-9110. https://doi.org/10.1002/ange.201302954 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/ange.201302954 | es_ES |
dc.description.upvformatpinicio | 9106 | es_ES |
dc.description.upvformatpfin | 9110 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 125 | es_ES |
dc.description.issue | 34 | es_ES |
dc.relation.senia | 263224 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Goodman, R. P. (2005). Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science, 310(5754), 1661-1665. doi:10.1126/science.1120367 | es_ES |
dc.description.references | Nishikawa, M., Rattanakiat, S., & Takakura, Y. (2010). DNA-based nano-sized systems for pharmaceutical and biomedical applications. Advanced Drug Delivery Reviews, 62(6), 626-632. doi:10.1016/j.addr.2010.03.006 | es_ES |
dc.description.references | Chhabra, R., Sharma, J., Liu, Y., Rinker, S., & Yan, H. (2010). DNA Self-assembly for Nanomedicine. Advanced Drug Delivery Reviews, 62(6), 617-625. doi:10.1016/j.addr.2010.03.005 | es_ES |
dc.description.references | Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818 | es_ES |
dc.description.references | Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818 | es_ES |
dc.description.references | Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085 | es_ES |
dc.description.references | Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d | es_ES |
dc.description.references | Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(22), 5556-5561. doi:10.1002/ange.201107960 | es_ES |
dc.description.references | Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(22), 5460-5465. doi:10.1002/anie.201107960 | es_ES |
dc.description.references | Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 | es_ES |
dc.description.references | Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2010). Mesoporous Silica Nanoparticles End-Capped with Collagen: Redox-Responsive Nanoreservoirs for Targeted Drug Delivery. Angewandte Chemie, 123(3), 666-669. doi:10.1002/ange.201005061 | es_ES |
dc.description.references | Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2010). Mesoporous Silica Nanoparticles End-Capped with Collagen: Redox-Responsive Nanoreservoirs for Targeted Drug Delivery. Angewandte Chemie International Edition, 50(3), 640-643. doi:10.1002/anie.201005061 | es_ES |
dc.description.references | Porta, F., Lamers, G. E. M., Zink, J. I., & Kros, A. (2011). Peptide modified mesoporous silica nanocontainers. Physical Chemistry Chemical Physics, 13(21), 9982. doi:10.1039/c0cp02959a | es_ES |
dc.description.references | Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie, 124(50), 12654-12657. doi:10.1002/ange.201206416 | es_ES |
dc.description.references | Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie International Edition, 51(50), 12486-12489. doi:10.1002/anie.201206416 | es_ES |
dc.description.references | Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847 | es_ES |
dc.description.references | Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847 | es_ES |
dc.description.references | Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). Ein programmierbares, DNA-basiertes molekulares Ventil für kolloidales, mesoporöses Siliciumoxid. Angewandte Chemie, 122(28), 4842-4845. doi:10.1002/ange.201000827 | es_ES |
dc.description.references | Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827 | es_ES |
dc.description.references | Zhu, C.-L., Lu, C.-H., Song, X.-Y., Yang, H.-H., & Wang, X.-R. (2011). Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. Journal of the American Chemical Society, 133(5), 1278-1281. doi:10.1021/ja110094g | es_ES |
dc.description.references | Özalp, V. C., & Schäfer, T. (2011). Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chemistry - A European Journal, 17(36), 9893-9896. doi:10.1002/chem.201101403 | es_ES |
dc.description.references | Ruiz-Hernández, E., Baeza, A., & Vallet-Regí, M. (2011). Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates. ACS Nano, 5(2), 1259-1266. doi:10.1021/nn1029229 | es_ES |
dc.description.references | Zhang, Y., Yuan, Q., Chen, T., Zhang, X., Chen, Y., & Tan, W. (2012). DNA-Capped Mesoporous Silica Nanoparticles as an Ion-Responsive Release System to Determine the Presence of Mercury in Aqueous Solutions. Analytical Chemistry, 84(4), 1956-1962. doi:10.1021/ac202993p | es_ES |
dc.description.references | He, D., He, X., Wang, K., Cao, J., & Zhao, Y. (2012). A Photon-Fueled Gate-Like Delivery System Using i-Motif DNA Functionalized Mesoporous Silica Nanoparticles. Advanced Functional Materials, 22(22), 4704-4710. doi:10.1002/adfm.201201343 | es_ES |
dc.description.references | Chen, Z., Li, Z., Lin, Y., Yin, M., Ren, J., & Qu, X. (2013). Bioresponsive Hyaluronic Acid-Capped Mesoporous Silica Nanoparticles for Targeted Drug Delivery. Chemistry - A European Journal, 19(5), 1778-1783. doi:10.1002/chem.201202038 | es_ES |
dc.description.references | Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u | es_ES |
dc.description.references | Tarn, D., Xue, M., & Zink, J. I. (2013). pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 52(4), 2044-2049. doi:10.1021/ic3024265 | es_ES |
dc.description.references | Hoffman, A. S. (2008). The origins and evolution of «controlled» drug delivery systems. Journal of Controlled Release, 132(3), 153-163. doi:10.1016/j.jconrel.2008.08.012 | es_ES |
dc.description.references | Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small, 6(18), 1952-1967. doi:10.1002/smll.200901789 | es_ES |
dc.description.references | Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie, 121(45), 8671-8674. doi:10.1002/ange.200904243 | es_ES |
dc.description.references | Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243 | es_ES |
dc.description.references | Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J., & Jung, J. H. (2011). Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. Journal of Materials Chemistry, 21(22), 7882. doi:10.1039/c1jm11334h | es_ES |
dc.description.references | Cui, Y., Dong, H., Cai, X., Wang, D., & Li, Y. (2012). Mesoporous Silica Nanoparticles Capped with Disulfide-Linked PEG Gatekeepers for Glutathione-Mediated Controlled Release. ACS Applied Materials & Interfaces, 4(6), 3177-3183. doi:10.1021/am3005225 | es_ES |
dc.description.references | He, X., Zhao, Y., He, D., Wang, K., Xu, F., & Tang, J. (2012). ATP-Responsive Controlled Release System Using Aptamer-Functionalized Mesoporous Silica Nanoparticles. Langmuir, 28(35), 12909-12915. doi:10.1021/la302767b | es_ES |
dc.description.references | Climent, E., Gröninger, D., Hecht, M., Walter, M. A., Martínez-Máñez, R., Weller, M. G., … Rurack, K. (2013). Selective, Sensitive, and Rapid Analysis with Lateral-Flow Assays Based on Antibody-Gated Dye-Delivery Systems: The Example of Triacetone Triperoxide. Chemistry - A European Journal, 19(13), 4117-4122. doi:10.1002/chem.201300031 | es_ES |
dc.description.references | Drexler, H. G., & Uphoff, C. C. (2002). Cytotechnology, 39(2), 75-90. doi:10.1023/a:1022913015916 | es_ES |
dc.description.references | Volokhov, D. V., Graham, L. J., Brorson, K. A., & Chizhikov, V. E. (2011). Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques. Molecular and Cellular Probes, 25(2-3), 69-77. doi:10.1016/j.mcp.2011.01.002 | es_ES |
dc.description.references | ROTTEM, S. (1993). Beware of mycoplasmas. Trends in Biotechnology, 11(4), 143-151. doi:10.1016/0167-7799(93)90089-r | es_ES |
dc.description.references | Choppa, P. ., Vojdani, A., Tagle, C., Andrin, R., & Magtoto, L. (1998). Multiplex PCR for the detection ofMycoplasma fermentans, M. hominisandM. penetransin cell cultures and blood samples of patients with chronic fatigue syndrome. Molecular and Cellular Probes, 12(5), 301-308. doi:10.1006/mcpr.1998.0186 | es_ES |
dc.description.references | Sohaeverbeke, T., Gilroy, C., Bébéar, C., Dehais, J., & Taylor-Robinson, D. (1996). Mycoplasma fermentans in joints of patients with rheumatoid arthritis and other joint disorders. The Lancet, 347(9012), 1418. doi:10.1016/s0140-6736(96)91065-x | es_ES |