Mostrar el registro sencillo del ítem
dc.contributor.author | Santos Figueroa, Luis Enrique | es_ES |
dc.contributor.author | Giménez Morales, Cristina | es_ES |
dc.contributor.author | Agostini, Alessandro | es_ES |
dc.contributor.author | Aznar Gimeno, Elena | es_ES |
dc.contributor.author | Marcos Martínez, María Dolores | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Amoros del Toro, Pedro | es_ES |
dc.date.accessioned | 2014-06-19T10:10:17Z | |
dc.date.issued | 2013-12-16 | |
dc.identifier.issn | 1433-7851 | |
dc.identifier.uri | http://hdl.handle.net/10251/38232 | |
dc.description.abstract | [EN] Chromofluorogenic detection of the sulfite anion in pure water was accomplished by using a new hybrid organic¿inorganic material that contained a probe entrapped in hydrophobic biomimetic cavities. This material was used for the detection of sulfite in red wine. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Government (project MAT2012-38429-C04) and the Generalitat Valenciana (project PROMETEO/2009/016) is gratefully acknowledged. We also thank the Fundacion Carolina and UPNFM-Honduras for a doctoral grant to L. E. Santos-Figueroa and to the Spanish Ministerio de Ciencia e Innovacion for a doctoral grant to C. Gimenez. | en_EN |
dc.format.extent | 5 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Angewandte Chemie International Edition | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Sulfite | es_ES |
dc.subject | Sensors | es_ES |
dc.subject | Organic-inorganic hybrid materials | es_ES |
dc.subject | Mesoporous nanoparticles | es_ES |
dc.subject | Food analysis | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/anie.201306688 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.description.bibliographicCitation | Santos Figueroa, LE.; Giménez Morales, C.; Agostini, A.; Aznar Gimeno, E.; Marcos Martínez, MD.; Sancenón Galarza, F.; Martínez Mañez, R.... (2013). Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic-Inorganic Silica Nanoparticles. Angewandte Chemie International Edition. 52(51):13712-13716. https://doi.org/10.1002/anie.201306688 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/anie.201306688 | es_ES |
dc.description.upvformatpinicio | 13712 | es_ES |
dc.description.upvformatpfin | 13716 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 51 | es_ES |
dc.relation.senia | 255445 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Official Journal of the European Communities | es_ES |
dc.description.references | Vally, H., Misso, N. L. A., & Madan, V. (2009). Clinical effects of sulphite additives. Clinical & Experimental Allergy, 39(11), 1643-1651. doi:10.1111/j.1365-2222.2009.03362.x | es_ES |
dc.description.references | Niknahad, H., & O’Brien, P. J. (2008). Mechanism of sulfite cytotoxicity in isolated rat hepatocytes. Chemico-Biological Interactions, 174(3), 147-154. doi:10.1016/j.cbi.2008.05.032 | es_ES |
dc.description.references | Oliphant, T., Mitra, A., & Wilkinson, M. (2012). Contact allergy to sodium sulfite and its relationship to sodium metabisulfite. Contact Dermatitis, 66(3), 128-130. doi:10.1111/j.1600-0536.2011.02029.x | es_ES |
dc.description.references | García-Ortega, P., Scorza, E., & Teniente, A. (2010). Basophil activation test in the diagnosis of sulphite-induced immediate urticaria. Clinical & Experimental Allergy, 40(4), 688-690. doi:10.1111/j.1365-2222.2010.03482.x | es_ES |
dc.description.references | Vally, H., Thompson, P. J., & Misso, N. L. A. (2007). Changes in bronchial hyperresponsiveness following high- and low-sulphite wine challenges in wine-sensitive asthmatic patients. Clinical & Experimental Allergy, 37(7), 1062-1066. doi:10.1111/j.1365-2222.2007.02747.x | es_ES |
dc.description.references | Bush, R. K., Taylor, S. L., Holden, K., Nordlee, J. A., & Busse, W. W. (1986). Prevalence of sensitivity to sulfiting agents in asthmatic patients. The American Journal of Medicine, 81(5), 816-820. doi:10.1016/0002-9343(86)90351-7 | es_ES |
dc.description.references | STEVENSON, D., & SIMON, R. (1981). Sensitivity to ingested metabisulfites in asthmatic subjects. Journal of Allergy and Clinical Immunology, 68(1), 26-32. doi:10.1016/0091-6749(81)90119-6 | es_ES |
dc.description.references | Iwasawa, S., Kikuchi, Y., Nishiwaki, Y., Nakano, M., Michikawa, T., Tsuboi, T., … Omae, K. (2009). Effects of SO 2 on Respiratory System of Adult Miyakejima Resident 2 Years after Returning to the Island. Journal of Occupational Health, 51(1), 38-47. doi:10.1539/joh.l8075 | es_ES |
dc.description.references | Shi, X. (1994). Generation of SO3−and OH radicals in SO32− reactions with inorganic environmental pollutants and its implications to SO32−toxicity. Journal of Inorganic Biochemistry, 56(3), 155-165. doi:10.1016/0162-0134(94)85002-x | es_ES |
dc.description.references | Karchmer, J. H., & Dunahoe, J. W. (1948). Rapid Determination of Sulfides, Thiosulfates, and Sulfites in Refinery Spent Caustic Solutions. Analytical Chemistry, 20(10), 915-919. doi:10.1021/ac60022a013 | es_ES |
dc.description.references | Li, G., & Sang, N. (2009). Delayed rectifier potassium channels are involved in SO2 derivative-induced hippocampal neuronal injury. Ecotoxicology and Environmental Safety, 72(1), 236-241. doi:10.1016/j.ecoenv.2007.11.015 | es_ES |
dc.description.references | Li, J., Li, R., & Meng, Z. (2010). Sulfur dioxide upregulates the aortic nitric oxide pathway in rats. European Journal of Pharmacology, 645(1-3), 143-150. doi:10.1016/j.ejphar.2010.07.034 | es_ES |
dc.description.references | Vally, H. (2001). Role of sulfite additives in wine induced asthma: single dose and cumulative dose studies. Thorax, 56(10), 763-769. doi:10.1136/thorax.56.10.763 | es_ES |
dc.description.references | Sang, N., Yun, Y., Li, H., Hou, L., Han, M., & Li, G. (2010). SO2 Inhalation Contributes to the Development and Progression of Ischemic Stroke in the Brain. Toxicological Sciences, 114(2), 226-236. doi:10.1093/toxsci/kfq010 | es_ES |
dc.description.references | Keil, R., Hampp, R., & Ziegler, H. (1989). Cycling technique for the determination of femtomole amounts of sulfite. Analytical Chemistry, 61(15), 1755-1758. doi:10.1021/ac00190a032 | es_ES |
dc.description.references | Huang, D., Xu, B., Tang, J., Luo, J., Chen, L., Yang, L., … Bi, S. (2010). Indirect determination of sulfide ions in water samples at trace level by anodic stripping voltammetry using mercury film electrode. Anal. Methods, 2(2), 154-158. doi:10.1039/b9ay00183b | es_ES |
dc.description.references | Abdel-Latif, M. S. (1994). New Spectrophotometric Method for Sulfite Determination. Analytical Letters, 27(13), 2601-2614. doi:10.1080/00032719408002664 | es_ES |
dc.description.references | Li, Y., & Zhao, M. (2006). Simple methods for rapid determination of sulfite in food products. Food Control, 17(12), 975-980. doi:10.1016/j.foodcont.2005.07.008 | es_ES |
dc.description.references | Haskins, J. E., Kendall, H., & Baird, R. B. (1984). A low level spectrophotometric method for the determination of sulfite in water. Water Research, 18(6), 751-753. doi:10.1016/0043-1354(84)90171-4 | es_ES |
dc.description.references | AKASAKA, K., MATSUDA, H., OHRUI, H., MEGURO, H., & SUZUKI, T. (1990). Fluorometric determination of sulfite in wine by N-(9-acridinyl)maleimide. Agricultural and Biological Chemistry, 54(2), 501-504. doi:10.1271/bbb1961.54.501 | es_ES |
dc.description.references | Pizzoferrato, L., Di Lullo, G., & Quattrucci, E. (1998). Determination of free, bound and total sulphites in foods by indirect photometry-HPLC. Food Chemistry, 63(2), 275-279. doi:10.1016/s0308-8146(98)00021-1 | es_ES |
dc.description.references | McFeeters, R. F., & Barish, A. O. (2003). Sulfite Analysis of Fruits and Vegetables by High-Performance Liquid Chromatography (HPLC) with Ultraviolet Spectrophotometric Detection. Journal of Agricultural and Food Chemistry, 51(6), 1513-1517. doi:10.1021/jf025693c | es_ES |
dc.description.references | Daunoravicius, Z., & Padarauskas, A. (2002). Capillary electrophoretic determination of thiosulfate, sulfide and sulfite using in-capillary derivatization with iodine. ELECTROPHORESIS, 23(15), 2439-2444. doi:10.1002/1522-2683(200208)23:15<2439::aid-elps2439>3.0.co;2-z | es_ES |
dc.description.references | Fazio, T., & Warner, C. R. (1990). A review of sulphites in foods: Analytical methodology and reported findings. Food Additives and Contaminants, 7(4), 433-454. doi:10.1080/02652039009373907 | es_ES |
dc.description.references | Jankovskiene, G., Daunoravicius, Z., & Padarauskas, A. (2001). Capillary electrophoretic determination of sulfite using the zone-passing technique of in-capillary derivatization. Journal of Chromatography A, 934(1-2), 67-73. doi:10.1016/s0021-9673(01)01295-x | es_ES |
dc.description.references | Ministry of Health. The determination of sulphur dioxide in foods. (1927). The Analyst, 52(615), 343. doi:10.1039/an9275200343 | es_ES |
dc.description.references | Thanh, N. T. K., Decnop-Weever, L. G., & Kok, W. T. (1994). Determination of sulphite in wine by flow injection analysis with indirect electrochemical detection. Fresenius’ Journal of Analytical Chemistry, 349(6), 469-472. doi:10.1007/bf00322936 | es_ES |
dc.description.references | Thompson, J. B., & Toy, E. (1945). Determination of Sulfur Dioxide. Improved Monier-Williams Method. Industrial & Engineering Chemistry Analytical Edition, 17(10), 612-615. doi:10.1021/i560146a002 | es_ES |
dc.description.references | Santos-Figueroa, L. E., Moragues, M. E., Climent, E., Agostini, A., Martínez-Máñez, R., & Sancenón, F. (2013). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chemical Society Reviews, 42(8), 3489. doi:10.1039/c3cs35429f | es_ES |
dc.description.references | Song, N. R., Moon, J. H., Choi, J., Jun, E. J., Kim, Y., Kim, S.-J., … Yoon, J. (2013). Cyclic benzobisimidazolium derivative for the selective fluorescent recognition of HSO4−via a combination of C–H hydrogen bonds and charge interactions. Chemical Science, 4(4), 1765. doi:10.1039/c3sc22201b | es_ES |
dc.description.references | Mohr, G. J. (2002). A chromoreactand for the selective detection of HSO3−based on the reversible bisulfite addition reaction in polymer membranes. Chem. Commun., (22), 2646-2647. doi:10.1039/b207621g | es_ES |
dc.description.references | Chen, K., Guo, Y., Lu, Z., Yang, B., & Shi, Z. (2010). Novel Coumarin-based Fluorescent Probe for Selective Detection of Bisulfite Anion in Water. Chinese Journal of Chemistry, 28(1), 55-60. doi:10.1002/cjoc.201090035 | es_ES |
dc.description.references | Yang, X.-F., Zhao, M., & Wang, G. (2011). A rhodamine-based fluorescent probe selective for bisulfite anion in aqueous ethanol media. Sensors and Actuators B: Chemical, 152(1), 8-13. doi:10.1016/j.snb.2010.09.066 | es_ES |
dc.description.references | Sun, Y.-Q., Wang, P., Liu, J., Zhang, J., & Guo, W. (2012). A fluorescent turn-on probe for bisulfite based on hydrogen bond-inhibited CN isomerization mechanism. The Analyst, 137(15), 3430. doi:10.1039/c2an35512d | es_ES |
dc.description.references | Yang, Y., Huo, F., Zhang, J., Xie, Z., Chao, J., Yin, C., … Yan, X. (2012). A novel coumarin-based fluorescent probe for selective detection of bissulfite anions in water and sugar samples. Sensors and Actuators B: Chemical, 166-167, 665-670. doi:10.1016/j.snb.2012.03.034 | es_ES |
dc.description.references | Yu, C., Luo, M., Zeng, F., & Wu, S. (2012). A fast-responding fluorescent turn-on sensor for sensitive and selective detection of sulfite anions. Analytical Methods, 4(9), 2638. doi:10.1039/c2ay25496d | es_ES |
dc.description.references | Cheng, X., Jia, H., Feng, J., Qin, J., & Li, Z. (2013). «Reactive» probe for hydrogen sulfite: Good ratiometric response and bioimaging application. Sensors and Actuators B: Chemical, 184, 274-280. doi:10.1016/j.snb.2013.04.070 | es_ES |
dc.description.references | Wang, G., Qi, H., & Yang, X.-F. (2012). A ratiometric fluorescent probe for bisulphite anion, employing intramolecular charge transfer. Luminescence, 28(2), 97-101. doi:10.1002/bio.2344 | es_ES |
dc.description.references | Gu, X., Liu, C., Zhu, Y.-C., & Zhu, Y.-Z. (2011). A Boron-dipyrromethene-Based Fluorescent Probe for Colorimetric and Ratiometric Detection of Sulfite. Journal of Agricultural and Food Chemistry, 59(22), 11935-11939. doi:10.1021/jf2032928 | es_ES |
dc.description.references | Choi, M. G., Hwang, J., Eor, S., & Chang, S.-K. (2010). Chromogenic and Fluorogenic Signaling of Sulfite by Selective Deprotection of Resorufin Levulinate. Organic Letters, 12(24), 5624-5627. doi:10.1021/ol102298b | es_ES |
dc.description.references | Chen, S., Hou, P., Wang, J., & Song, X. (2012). A highly sulfite-selective ratiometric fluorescent probe based on ESIPT. RSC Advances, 2(29), 10869. doi:10.1039/c2ra21471g | es_ES |
dc.description.references | Wu, M.-Y., He, T., Li, K., Wu, M.-B., Huang, Z., & Yu, X.-Q. (2013). A real-time colorimetric and ratiometric fluorescent probe for sulfite. The Analyst, 138(10), 3018. doi:10.1039/c3an00172e | es_ES |
dc.description.references | Sun, Y.-Q., Liu, J., Zhang, J., Yang, T., & Guo, W. (2013). Fluorescent probe for biological gas SO2 derivatives bisulfite and sulfite. Chemical Communications, 49(26), 2637. doi:10.1039/c3cc39161b | es_ES |
dc.description.references | Xu, J., Liu, K., Di, D., Shao, S., & Guo, Y. (2007). A selective colorimetric chemosensor for detecting in neutral aqueous solution. Inorganic Chemistry Communications, 10(6), 681-684. doi:10.1016/j.inoche.2007.02.019 | es_ES |
dc.description.references | Rodríguez-Díaz, R. C., Aguilar-Caballos, M. P., & Gómez-Hens, A. (2004). Usefulness of Ytterbium(III) as Analytical Reagent for Total Sulfite Determination in White Wine Samples. Journal of Agricultural and Food Chemistry, 52(26), 7777-7781. doi:10.1021/jf048826y | es_ES |
dc.description.references | Sun, Y., Zhong, C., Gong, R., Mu, H., & Fu, E. (2009). A Ratiometric Fluorescent Chemodosimeter with Selective Recognition for Sulfite in Aqueous Solution. The Journal of Organic Chemistry, 74(20), 7943-7946. doi:10.1021/jo9014744 | es_ES |
dc.description.references | Zhu, A., Qu, Q., Shao, X., Kong, B., & Tian, Y. (2012). Carbon-Dot-Based Dual-Emission Nanohybrid Produces a Ratiometric Fluorescent Sensor for In Vivo Imaging of Cellular Copper Ions. Angewandte Chemie, 124(29), 7297-7301. doi:10.1002/ange.201109089 | es_ES |
dc.description.references | Zhu, A., Qu, Q., Shao, X., Kong, B., & Tian, Y. (2012). Carbon-Dot-Based Dual-Emission Nanohybrid Produces a Ratiometric Fluorescent Sensor for In Vivo Imaging of Cellular Copper Ions. Angewandte Chemie International Edition, 51(29), 7185-7189. doi:10.1002/anie.201109089 | es_ES |
dc.description.references | Zhang, J., Xu, X., & Yang, X. (2012). Role of Tris on the colorimetric recognition of anions with melamine-modified gold nanoparticle probe and the visual detection of sulfite and hypochlorite. The Analyst, 137(15), 3437. doi:10.1039/c2an35609k | es_ES |
dc.description.references | Zhang, J., Yuan, Y., Wang, X., & Yang, X. (2012). Sulfite recognition and sensing using Au nanoparticles as colorimetric probe: a judicious combination between anionic binding sites and plasmonic nanoparticles. Analytical Methods, 4(6), 1616. doi:10.1039/c2ay25181g | es_ES |
dc.description.references | Xie, H., Zeng, F., Yu, C., & Wu, S. (2013). A polylysine-based fluorescent probe for sulfite anion detection in aqueous media via analyte-induced charge generation and complexation. Polymer Chemistry, 4(21), 5416. doi:10.1039/c3py00586k | es_ES |
dc.description.references | Pundir, C. S., & Rawal, R. (2013). Determination of sulfite with emphasis on biosensing methods: a review. Analytical and Bioanalytical Chemistry, 405(10), 3049-3062. doi:10.1007/s00216-013-6753-0 | es_ES |
dc.description.references | Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847 | es_ES |
dc.description.references | Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847 | es_ES |
dc.description.references | Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 | es_ES |
dc.description.references | Kickelbick, G. (2004). Mesoporöse anorganisch-organische Hybridmaterialien. Angewandte Chemie, 116(24), 3164-3166. doi:10.1002/ange.200301751 | es_ES |
dc.description.references | Kickelbick, G. (2004). Hybrid Inorganic–Organic Mesoporous Materials. Angewandte Chemie International Edition, 43(24), 3102-3104. doi:10.1002/anie.200301751 | es_ES |
dc.description.references | Stein, A. (2003). Advances in Microporous and Mesoporous Solids—Highlights of Recent Progress. Advanced Materials, 15(10), 763-775. doi:10.1002/adma.200300007 | es_ES |
dc.description.references | Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m | es_ES |
dc.description.references | Wu, S.-H., Mou, C.-Y., & Lin, H.-P. (2013). Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews, 42(9), 3862. doi:10.1039/c3cs35405a | es_ES |
dc.description.references | Tang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504-1534. doi:10.1002/adma.201104763 | es_ES |
dc.description.references | Ariga, K., Vinu, A., Yamauchi, Y., Ji, Q., & Hill, J. P. (2012). Nanoarchitectonics for Mesoporous Materials. Bulletin of the Chemical Society of Japan, 85(1), 1-32. doi:10.1246/bcsj.20110162 | es_ES |
dc.description.references | Innocenzi, P., & Malfatti, L. (2013). Mesoporous thin films: properties and applications. Chemical Society Reviews, 42(9), 4198. doi:10.1039/c3cs35377j | es_ES |
dc.description.references | El Haskouri, J., Zárate, D. O. de, Guillem, C., Latorre, J., Caldés, M., Beltrán, A., … Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, (4), 330-331. doi:10.1039/b110883b | es_ES |
dc.description.references | Huerta, L., El Haskouri, J., Vie, D., Comes, M., Latorre, J., Guillem, C., … Amorós, P. (2007). Nanosized Mesoporous Silica Coatings on Ceramic Foams: New Hierarchical Rigid Monoliths. Chemistry of Materials, 19(5), 1082-1088. doi:10.1021/cm0628101 | es_ES |