- -

Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray

Show simple item record

Files in this item

dc.contributor.author Pastor Soriano, José Vicente es_ES
dc.contributor.author Payri, Raul es_ES
dc.contributor.author Salavert Fernandez, Javier es_ES
dc.contributor.author Manin, J. es_ES
dc.date.accessioned 2014-06-19T10:31:51Z
dc.date.issued 2012-08-01
dc.identifier.issn 1229-9138
dc.identifier.uri http://hdl.handle.net/10251/38234
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s12239-012-0070-z es_ES
dc.description.abstract Spray sizing that records fluorescent emission and scattered light has been widely applied to spray diagnostics over the last two decades. Different experimental strategies have been developed, but comparing the different solutions offered has remained of interest to experimentalists. In this work, a comparison of two fluorescence strategies for measuring droplet size in the liquid phase of a last-generation DI diesel spray is conducted. The natural fluorescent emission of a commercial diesel fuel and the fluorescence emitted by a tracer (Rhodamine B) are compared using theoretical and experimental approaches. The LIF/Mie ratio commonly called Planar Droplet Sizing (PDS) technique is applied in two different ways to elucidate the possible advantages of using a fluorescent dopant. The sprays were injected under non-evaporative conditions into a constant pressure vessel that simulates densities present at the moment of injection in currently used passenger car diesel engines. Characterization of the signal properties was performed by measuring the absorption coefficient, fluorescence emission spectrum, quantum yield and lifetime of both configurations. The scattered light and fluorescence intensities were calculated to verify the dependencies of the droplet surface and volume. When applying the two techniques to quantify droplet size in dense diesel sprays, the results show that signal weakness and lack of control over the properties of natural fluorescence produce distortion in the shape of the spray and cause measurements to be unreliable. © 2012 The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg. es_ES
dc.description.sponsorship This research has been funded in the frame of the project PROFUEL reference TRA2011-26293 from Ministerio de Ciencia e Innovacion. The injectors are part of the ECN international project. en_EN
dc.format.extent 12 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation Ministerio de Ciencia e Innovación project PROFUEL [TRA2011-26293] es_ES
dc.relation.ispartof International Journal of Automotive Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diesel spray es_ES
dc.subject Fluorescence quantum yield es_ES
dc.subject Laser-induced fluorescence (LIF) es_ES
dc.subject Rhodamine B es_ES
dc.subject Sauter mean diameter (SMD) es_ES
dc.subject Laser induced fluorescence es_ES
dc.subject Diesel engines es_ES
dc.subject Diesel fuels es_ES
dc.subject Drops es_ES
dc.subject Emission spectroscopy es_ES
dc.subject Light scattering es_ES
dc.subject Quantum yield es_ES
dc.subject Fluorescence es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s12239-012-0070-z
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Pastor Soriano, JV.; Payri, R.; Salavert Fernandez, J.; Manin, J. (2012). Evaluation of natural and tracer fluorescent emission methods for droplet size measurements in a diesel spray. International Journal of Automotive Technology. 13(5):713-724. doi:10.1007/s12239-012-0070-z es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs12239-012-0070-z es_ES
dc.description.upvformatpinicio 713 es_ES
dc.description.upvformatpfin 724 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 227724
dc.relation.references Albrecht, H. E., Damaschke, N., Borys, M. and Tropea, C. (2003). Laser Doppler and Phase Doppler Measurement Techniques. Springer. Berlin. es_ES
dc.relation.references Barnes, M. D., Whitten, W. B. and Ramsey, J. M. (1994). Enhanced fluorescence yields through cavity quantumelectrodynamic effects in microdroplets. J. Optical Society of America B 11,7, 1297–1304. es_ES
dc.relation.references Benajes, J., Molina, S., Novella, R., Amorim, R., Ben Hadj Hamouda, H. and Hardy, J. (2010). Comparison of two injection systems in an HSDI diesel engine using split injection and different injector nozzles. Int. J. Automotive Technology 11,2, 139–146. es_ES
dc.relation.references Charalampous, G. and Hardalupas, Y. (2011). Method to reduce errors of droplet sizing based on the ratio of fluorescent and scattered light intensities (laser-induced fluorescence/Mie technique). Applied Optics, 50, 3622–3637. es_ES
dc.relation.references Chen, G., Mazumder, M., Chang, R. K., Swindal, J. C. and Acker, W. P. (1996). Laser diagnostics for droplet characterization: Application of morphology dependent resonances. Progress in Energy and Combustion Science 22,2, 163–188. es_ES
dc.relation.references Desantes, J. M., Payri, R., Garcia, J. M. and Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel 86,7–8, 1093–1101. es_ES
dc.relation.references Domann, R. and Hardalupas, Y. A. (2000). Study of parameters that influence the accuracy of the planar droplet sizing (PDS) technique. Part. Part. Syst. Charact. 3–11. es_ES
dc.relation.references Domann, R. and Hardalupas, Y. A. (2001). Spatial distribution of fluorescence within large doplets and its dependence on dye concentration. Applied Optics 40,21, 3586–3597. es_ES
dc.relation.references Domann, R. and Hardalupas, Y. A. (2002). Quantitative measurement of planar droplet sauter mean diameter in sprays using planar droplet sizing. 11th Int. Symp. Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal. es_ES
dc.relation.references Eckbreth, A. C. (1988). Laser Diagnostics for Combustion Species and Temperature. Abacus. Cambridge. Mass. es_ES
dc.relation.references Greenhalgh, D. A. (1999). Planar measurements of fuel vapour, liquid fuel, liquid droplet size and soot. Planar Optical Measurement Methods for Gas Turbine Components, 1–7. es_ES
dc.relation.references Im, K., Lin, K., Lai, M. and Chon, M. (2011). Breakup modeling of a liquid jet in cross flow. Int. J. Automotive Technology 12,4, 489–496. es_ES
dc.relation.references Jermy, M. C. and Greenhalgh, D. A. (2000). Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase doppler measurement. Appl. Phys. B, 71, 703–710. es_ES
dc.relation.references Kim, Y., Kim, K. and Lee, K. (2011). Effect of a 2-stage injection strategy on the combustion and flame characteristics in a PCCI engine. Int. J. Automotive Technology 12,5, 639–644. es_ES
dc.relation.references Ko, F. H., Weng, L. Y., Ko, C. J. and Chu, T. C. (2006). Characterization of imprinting polymeric temperature variation with fluorescent Rhodamine B molecule. Microelectronic Engineering, 83, 864–868. es_ES
dc.relation.references Lakowicz, J. R. (2006). Principles of Fluorescence Spectroscopy. 3rd Edn. Springer. es_ES
dc.relation.references Lee, S. H., Teong, J., Lee, J. T., Ryou, H. S. and Hong, K. (2005). Investigation on spray characteristics under ultrahigh injection pressure conditions. Int. J. Automotive Technology 6,2, 125–131. es_ES
dc.relation.references Lee, B., Song, J., Chang, Y. and Jeon, C. (2010). Effect of the number of fuel injector holes on characteristics of combustion and emissions in a diesel engine. Int. J. Automotive Technology 11,6, 783–791. es_ES
dc.relation.references LeGal, P., Farrugia, N. and Greenhalgh, D. A. (1999). Laser sheet dropsizing of dense sprays. Optics and Laser Techn., 31, 75–83. es_ES
dc.relation.references Lockett, R. D., Richter, J. and Greenhalgh, D. A. (1998). The characterisation of a diesel spray using combined laser induced fluorescence and laser sheet dropsizing. Conf. Lasers and Electro-Optics Europe. es_ES
dc.relation.references Magde, D., Rojas, G. E. and Seybold, P. (1999). Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem. Photobiol., 70, 737. es_ES
dc.relation.references Naber, J. and Siebers, D. (1996). Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Paper No. 960034. es_ES
dc.relation.references Pastor, J. V., López, J. J., Juliá, J. E. and Benajes, J. V. (2002). Planar laser-induced fluorescence fuel concentration measurements in isothermal diesel sprays. Opt. Express 10,7, 309–323. es_ES
dc.relation.references Pastor, J. V., Payri, R., Araneo, L. and Manin, J. (2009). Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation. Optical Engineering 48,1, 013601. es_ES
dc.relation.references Payri, R., Garcia, J. M., Salvador, F. J. and Gimeno, J. (2005a). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84, 551–561. es_ES
dc.relation.references Payri, R., Salvador, F. J., Gimeno, J. and Soare, V. (2005b). Determination of diesel sprays characteristics in real engine in-cylinder air density and pressure conditions. J. Mech. Sci. Technol., 19, 2040–2052. es_ES
dc.relation.references Payri, R., Tormos, B., Salvador, F. J. and Araneo, L. (2008). Spray droplet velocity characterization for convergent nozzles with three different diameters. Fuel 87,15, 3176–3182. es_ES
dc.relation.references Payri, F., Pastor, J., Payri, R. and Manin, J. (2011). Determination of the optical depth of a DI diesel spray. J. Mech. Sci. Technol., 25, 209–219. es_ES
dc.relation.references Potz, D., Chirst, W. and Dittus, B. (2000). Diesel nozzle: The determining interface between injection system and combustion chamber. Conf. Thermo and Fluid-dynamic Processes in Diesel Engines, Valencia, Spain. es_ES
dc.relation.references Ramírez, A. I., Som, S., Aggarwal, S. K., Kastengren, A. L., El-Hannouny, E. M., Longman, D. E. and Powell, C. F. (2009). Quantitative X-ray measurements of highpressure fuel sprays from a production heavy duty diesel injector. Experiments in Fluids 47,1, 119–134. es_ES
dc.relation.references Schulz, C. and Sick, V. (2005). Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progress in Energy and Combustion Science, 31, 75–121. es_ES
dc.relation.references Sjoback, R. and Nygren, J. and Kubista, M. (1998). Characterization of fluorescein—oligonucleotide conjugates and measurement of local electrostatic potential. Biopolymers, 46, 445–453. es_ES
dc.relation.references Soare, V. (2007). Phase Doppler Measurement in Diesel Dense Sprays: Optimisation of Measurements and Study of the Orifice Geometry Influence Over the Spray at Microscopic Level. Ph.D. Dissertion. E.T.S. Ingenieros Industriales. Universidad Politécnica de Valencia. Spain. es_ES
dc.relation.references Williams, A. T. R., Winfield, S. A. and Miller, J. N. (1983). Relative fluorescence quantum yields using a computer controlled luminescence spectrometer. Analyst., 108, 1067. es_ES
dc.relation.references Yeh, C. N., Kosaka, H. and Kamimoto, T. A. (1993). Fluorescence/scattering imaging technique for instantaneous 2-D measurements of particle size distribution in a transient spray. Proc. 3rd Cong. Opt. Part. Sizing, Yokohama, Japan, 335–361. es_ES


This item appears in the following Collection(s)

Show simple item record