- -

Estimating Point of Regard with a Consumer Camera at a Distance

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Estimating Point of Regard with a Consumer Camera at a Distance

Show simple item record

Files in this item

dc.contributor.author Mansanet Sandín, Jorge es_ES
dc.contributor.author Albiol Colomer, Alberto es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.contributor.author Mossi García, José Manuel es_ES
dc.contributor.author Albiol Colomer, Antonio José es_ES
dc.date.accessioned 2014-06-27T07:18:52Z
dc.date.issued 2013
dc.identifier.isbn 978-3-642-38627-5
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/38423
dc.description.abstract In this work, we have studied the viability of a novel technique to estimate the POR that only requires video feed from a consumer camera. The system can work under uncontrolled light conditions and does not require any complex hardware setup. To that end we propose a system that uses PCA feature extraction from the eyes region followed by non-linear regression. We evaluated three state of the art non-linear regression algorithms. In the study, we also compared the performance using a high quality webcam versus a Kinect sensor. We found, that despite the relatively low quality of the Kinect images it achieves similar performance compared to the high quality camera. These results show that the proposed approach could be extended to estimate POR in a completely non-intrusive way. es_ES
dc.format.extent 9 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Pattern Recognition and Image Analysis es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;7887
dc.rights Reserva de todos los derechos es_ES
dc.subject Point-of-regard es_ES
dc.subject Human computer interaction (HCI) es_ES
dc.subject Gaze estimation es_ES
dc.subject Eye tracking es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Estimating Point of Regard with a Consumer Camera at a Distance es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-642-38628-2_104
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Mansanet Sandin, J.; Albiol Colomer, A.; Paredes Palacios, R.; Mossi García, JM.; Albiol Colomer, AJ. (2013). Estimating Point of Regard with a Consumer Camera at a Distance. En Pattern Recognition and Image Analysis. Springer Verlag. 7887:881-888. doi:10.1007/978-3-642-38628-2_104 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 6th Iberian Conference, IbPRIA 2013 es_ES
dc.relation.conferencedate June 5-7, 2013. es_ES
dc.relation.conferenceplace Funchal, Madeira, Portugal es_ES
dc.relation.publisherversion http://link.springer.com/chapter/10.1007/978-3-642-38628-2_104 es_ES
dc.description.upvformatpinicio 881 es_ES
dc.description.upvformatpfin 888 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7887 es_ES
dc.relation.senia 260986
dc.description.references Baluja, S., Pomerleau, D.: Non-intrusive gaze tracking using artificial neural networks. Technical report (1994) es_ES
dc.description.references Breiman, L.: Random forests. Machine Learning (2001) es_ES
dc.description.references Logitech HD Webcam C525, http://www.logitech.com/es-es/webcam-communications/webcams/hd-webcam-c525 es_ES
dc.description.references Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM TIST (2011), Software, http://www.csie.ntu.edu.tw/~cjlin/libsvm es_ES
dc.description.references Drucker, H., Burges, C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines (1996) es_ES
dc.description.references Hansen, D.W., Ji, Q. In: the eye of the beholder: A survey of models for eyes and gaze. IEEE Transactions on PAMI (2010) es_ES
dc.description.references Ji, Q., Yang, X.: Real-time eye, gaze, and face pose tracking for monitoring driver vigilance. Real-Time Imaging (2002) es_ES
dc.description.references Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering (1960) es_ES
dc.description.references Microsoft Kinect, http://www.microsoft.com/en-us/kinectforwindows es_ES
dc.description.references Timmerman, M.E.: Principal component analysis (2nd ed.). i. t. jolliffe. Journal of the American Statistical Association (2003) es_ES
dc.description.references Morimoto, C.H., Mimica, M.R.M.: Eye gaze tracking techniques for interactive applications. Comput. Vis. Image Underst. (2005) es_ES
dc.description.references Pirri, F., Pizzoli, M., Rudi, A.: A general method for the point of regard estimation in 3d space. In: Proceedings of the IEEE Conference on CVPR (2011) es_ES
dc.description.references Reale, M.J., Canavan, S., Yin, L., Hu, K., Hung, T.: A multi-gesture interaction system using a 3-d iris disk model for gaze estimation and an active appearance model for 3-d hand pointing. IEEE Transactions on Multimedia (2011) es_ES
dc.description.references Saragih, J.M., Lucey, S., Cohn, J.F.: Face alignment through subspace constrained mean-shifts. In: International Conference of Computer Vision, ICCV (2009) es_ES
dc.description.references Kar-Han, T., Kriegman, D.J., Ahuja, N.: Appearance-based eye gaze estimation. In: Applications of Computer Vision (2002) es_ES
dc.description.references Takemura, K., Kohashi, Y., Suenaga, T., Takamatsu, J., Ogasawara, T.: Estimating 3d point-of-regard and visualizing gaze trajectories under natural head movements. In: Symposium on Eye-Tracking Research and Applications (2010) es_ES
dc.description.references Villanueva, A., Cabeza, R., Porta, S.: Eye tracking: Pupil orientation geometrical modeling. Image and Vision Computing (2006) es_ES
dc.description.references Williams, O., Blake, A., Cipolla, R.: Sparse and semi-supervised visual mapping with the s3gp. In: IEEE Computer Society Conference on CVPR (2006) es_ES


This item appears in the following Collection(s)

Show simple item record