- -

Power-aware scheduling with effective task migration for real-time multicore embedded systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Power-aware scheduling with effective task migration for real-time multicore embedded systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author March Cabrelles, José Luis es_ES
dc.contributor.author Sahuquillo Borrás, Julio es_ES
dc.contributor.author Petit Martí, Salvador Vicente es_ES
dc.contributor.author Hassan Mohamed, Houcine es_ES
dc.contributor.author Duato Marín, José Francisco es_ES
dc.date.accessioned 2014-06-30T09:37:56Z
dc.date.issued 2013-09
dc.identifier.issn 1532-0626
dc.identifier.uri http://hdl.handle.net/10251/38465
dc.description.abstract A major design issue in embedded systems is reducing the power consumption because batteries have a limited energy budget. For this purpose, several techniques such as dynamic voltage and frequency scaling (DVFS) or task migration are being used. DVFS allows reducing power by selecting the optimal voltage supply, whereas task migration achieves this effect by balancing the workload among cores. This paper focuses on power-aware scheduling allowing task migration to reduce energy consumption in multicore embedded systems implementing DVFS capabilities. To address energy savings, the devised schedulers follow two main rules: migrations are allowed at specific points of time and only one task is allowed to migrate each time. Two algorithms have been proposed working under real-time constraints. The simpler algorithm, namely, single option migration (SOM) only checks just one target core before performing a migration. In contrast, the multiple option migration (MOM) searches the optimal target core. In general, the MOM algorithm achieves better energy savings than the SOM algorithm, although differences are wider for a reduced number of cores and frequency/voltage levels. Moreover, the MOM algorithm reduces energy consumption as much as 40% over the worst fit algorithm. es_ES
dc.description.sponsorship This work was supported by the Spanish MICINN, Consolider Programme and Plan E funds, as well as European Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04-01. en_EN
dc.format.extent 15 es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Concurrency and Computation: Practice and Experience es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Dynamic Partitioning es_ES
dc.subject Task migration es_ES
dc.subject Embedded systems es_ES
dc.subject Power-aware es_ES
dc.subject Multicore es_ES
dc.subject Real-time systems es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Power-aware scheduling with effective task migration for real-time multicore embedded systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cpe.2899
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-14475-C04-01/ES/Arquitecturas De Servidores, Aplicaciones Y Servicios/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/287759/EU/High Performance and Embedded Architecture and Compilation/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2006-00046/ES/High-performance, reliable architectures for data centers and Internet servers/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation March Cabrelles, JL.; Sahuquillo Borrás, J.; Petit Martí, SV.; Hassan Mohamed, H.; Duato Marín, JF. (2013). Power-aware scheduling with effective task migration for real-time multicore embedded systems. Concurrency and Computation: Practice and Experience. 25(14):1987-2001. doi:10.1002/cpe.2899 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/cpe.2899/pdf es_ES
dc.description.upvformatpinicio 1987 es_ES
dc.description.upvformatpfin 2001 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 14 es_ES
dc.relation.senia 256412
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Euiseong Seo, Jinkyu Jeong, Seonyeong Park, & Joonwon Lee. (2008). Energy Efficient Scheduling of Real-Time Tasks on Multicore Processors. IEEE Transactions on Parallel and Distributed Systems, 19(11), 1540-1552. doi:10.1109/tpds.2008.104 es_ES
dc.description.references March, J. L., Sahuquillo, J., Hassan, H., Petit, S., & Duato, J. (2011). A New Energy-Aware Dynamic Task Set Partitioning Algorithm for Soft and Hard Embedded Real-Time Systems. The Computer Journal, 54(8), 1282-1294. doi:10.1093/comjnl/bxr008 es_ES
dc.description.references AlEnawy, T. A., & Aydin, H. (s. f.). Energy-Aware Task Allocation for Rate Monotonic Scheduling. 11th IEEE Real Time and Embedded Technology and Applications Symposium. doi:10.1109/rtas.2005.20 es_ES
dc.description.references Intel atom processor microarchitecture www.intel.com/ es_ES
dc.description.references Marvell ARMADA TM 628 Marvell Semiconductor, Inc. Santa Clara, CA, USA http://www.marvell.com/company/press_kit/assets/Marvell_ARMADA_628_Release_FINAL3.pdf es_ES
dc.description.references McNairy, C., & Bhatia, R. (2005). Montecito: A Dual-Core, Dual-Thread Itanium Processor. IEEE Micro, 25(2), 10-20. doi:10.1109/mm.2005.34 es_ES
dc.description.references Kalla, R., Sinharoy, B., & Tendler, J. M. (2004). IBM power5 chip: a dual-core multithreaded processor. IEEE Micro, 24(2), 40-47. doi:10.1109/mm.2004.1289290 es_ES
dc.description.references Shah A Arm plans to add multithreading to chip design 2010 http://www.itworld.com/hardware/122383/arm-plans-add-multithreading-chip-design es_ES
dc.description.references Schranzhofer, A., Chen, J.-J., & Thiele, L. (2010). Dynamic Power-Aware Mapping of Applications onto Heterogeneous MPSoC Platforms. IEEE Transactions on Industrial Informatics, 6(4), 692-707. doi:10.1109/tii.2010.2062192 es_ES
dc.description.references Cazorla, F. J., Knijnenburg, P. M. W., Sakellariou, R., Fernandez, E., Ramirez, A., & Valero, M. (2006). Predictable performance in SMT processors: synergy between the OS and SMTs. IEEE Transactions on Computers, 55(7), 785-799. doi:10.1109/tc.2006.108 es_ES
dc.description.references Fisher, N., & Baruah, S. (2008). The feasibility of general task systems with precedence constraints on multiprocessor platforms. Real-Time Systems, 41(1), 1-26. doi:10.1007/s11241-008-9054-5 es_ES
dc.description.references Buttazzo, G., Bini, E., & Yifan Wu. (2011). Partitioning Real-Time Applications Over Multicore Reservations. IEEE Transactions on Industrial Informatics, 7(2), 302-315. doi:10.1109/tii.2011.2123902 es_ES
dc.description.references Intel Pentium M processor datasheet INTEL Corp. Santa Clara, CA, USA 2004 http://download.intel.com/support/processors/mobile/pm/sb/25261203.pdf es_ES
dc.description.references Chaparro, P., Gonzáles, J., Magklis, G., Cai, Q., & González, A. (2007). Understanding the Thermal Implications of Multi-Core Architectures. IEEE Transactions on Parallel and Distributed Systems, 18(8), 1055-1065. doi:10.1109/tpds.2007.1092 es_ES
dc.description.references WCET analysis project. WCET benchmark programs 2006 http://www.mrtc.mdh.se/projects/wcet/ es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem