- -

Mobile clinical decision support systems and applications: a literature and commercial review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mobile clinical decision support systems and applications: a literature and commercial review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Pérez, Borja es_ES
dc.contributor.author DE LA TORRE DIEZ, ISABEL es_ES
dc.contributor.author López Coronado, Miguel es_ES
dc.contributor.author Sainz de Abajo, Beatriz es_ES
dc.contributor.author Robles Viejo, Montserrat es_ES
dc.contributor.author García Gómez, Juan Miguel es_ES
dc.date.accessioned 2014-07-04T11:04:47Z
dc.date.issued 2014-01
dc.identifier.issn 0148-5598
dc.identifier.uri http://hdl.handle.net/10251/38609
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s10916-013-0004-y es_ES
dc.description.abstract [EN] Background: The latest advances in eHealth and mHealth have propitiated the rapidly creation and expansion of mobile applications for health care. One of these types of applications are the clinical decision support systems, which nowadays are being implemented in mobile apps to facilitate the access to health care professionals in their daily clinical decisions. Objective: The aim of this paper is twofold. Firstly, to make a review of the current systems available in the literature and in commercial stores. Secondly, to analyze a sample of applications in order to obtain some conclusions and recommendations. Methods: Two reviews have been done: a literature review on Scopus, IEEE Xplore, Web of Knowledge and PubMed and a commercial review on Google play and the App Store. Five applications from each review have been selected to develop an in-depth analysis and to obtain more information about the mobile clinical decision support systems. Results: 92 relevant papers and 192 commercial apps were found. 44 papers were focused only on mobile clinical decision support systems. 171 apps were available on Google play and 21 on the App Store. The apps are designed for general medicine and 37 different specialties, with some features common in all of them despite of the different medical fields objective. Conclusions: The number of mobile clinical decision support applications and their inclusion in clinical practices has risen in the last years. However, developers must be careful with their interface or the easiness of use, which can impoverish the experience of the users. es_ES
dc.description.sponsorship This research has been partially supported by Ministerio de Economía y Competitividad, Spain. This research has been partially supported by the ICT-248765 EU-FP7 Project. This research has been partially supported by the IPT-2011-1126-900000 project under the INNPACTO 2011 program, Ministerio de Ciencia e Innovación.
dc.format.extent 10 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Medical Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Mobile applications es_ES
dc.subject Apps es_ES
dc.subject Clinical decision support es_ES
dc.subject MHealth. es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Mobile clinical decision support systems and applications: a literature and commercial review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10916-013-0004-y
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/248765/EU/A Computational Distributed System to Support the Treatment of Patients with Major Depression/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-2011-1126-900000/ES/Modelo semántico y algoritmos de Data Mining aplicados al tratamiento del Cáncer de Mama en centros de Atención Especializada/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Martínez Pérez, B.; De La Torre Diez, I.; López Coronado, M.; Sainz De Abajo, B.; Robles Viejo, M.; García Gómez, JM. (2014). Mobile clinical decision support systems and applications: a literature and commercial review. Journal of Medical Systems. 38(1):1-10. https://doi.org/10.1007/s10916-013-0004-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs10916-013-0004-y es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 253703
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Van De Belt, T. H., Engelen, L. J., Berben, S. A., and Schoonhoven, L., Definition of Health 2.0 and Medicine 2.0: A systematic review. J Med Internet Res 2010:12(2), 2012. es_ES
dc.description.references Oh, H., Rizo, C., Enkin, M., and Jadad, A., What is eHealth (3): A systematic review of published definitions. J Med Internet Res 7(1):1, 2005. PMID: 15829471. es_ES
dc.description.references World Health Organization (2011) mHealth: New horizons for health through mobile technologies: Based on the findings of the second global survey on eHealth (Global Observatory for eHealth Series, Volume 3). World Health Organization. 2011. ISBN: 9789241564250 es_ES
dc.description.references Lin, C., Mobile telemedicine: A survey study. J Med Syst April 36(2):511–520, 2012. es_ES
dc.description.references El Khaddar, M.A., Harroud, H., Boulmalf, M., Elkoutbi, M., Habbani, A., Emerging wireless technologies in e-health Trends, challenges, and framework design issues. 2012 International Conference on Multimedia Computing and Systems (ICMCS). 440–445, 2012. es_ES
dc.description.references Luanrattana, R., Win, K. T., Fulcher, J., and Iverson, D., Mobile technology use in medical education. J Med Syst 36(1):113–122, 2012. es_ES
dc.description.references Yang, S. C., Mobile applications and 4 G wireless networks: A framework for analysis. Campus-Wide Information Systems 29(5):344–357, 2012. es_ES
dc.description.references Kumar, B., Singh, S.P., Mohan, A., Emerging mobile communication technologies for health. 2010 International Conference on Computer and Communication Technology, ICCCT-2010; Allahabad; pp. 828–832, 2010. es_ES
dc.description.references Yan, H., Huo, H., Xu, Y., and Gidlund, M., Wireless sensor network based E-health system—implementation and experimental results. IEEE Transactions on Consumer Electronics 56(4):2288–2295, 2010. es_ES
dc.description.references IDC (2013) Press release: Strong demand for smartphones and heated vendor competition characterize the worldwide mobile phone market at the end of 2012. http://www.idc.com/getdoc.jsp?containerId=prUS23916413#.UVBKiRdhWCn . Accessed 11 September 2013. es_ES
dc.description.references IDC (2012) IDC Raises its worldwide tablet forecast on continued strong demand and forthcoming new product launches. http://www.idc.com/getdoc.jsp?containerId=prUS23696912#.US9x86JhWCl . Accessed 11 September 2013. es_ES
dc.description.references International Data Corporation (2013) Android and iOS combine for 91.1 % of the worldwide smartphone OS market in 4Q12 and 87.6 % for the year. http://www.idc.com/getdoc.jsp?containerId=prUS23946013 . Accessed 11 September 2013. es_ES
dc.description.references Jones, C., (2013) Apple and Google continue to gain US Smartphone market share. Forbes. http://www.forbes.com/sites/chuckjones/2013/01/04/apple-and-google-continue-to-gain-us-smartphone-market-share/ . Accessed 11 September 2013. es_ES
dc.description.references Apple (2013) iTunes. http://www.apple.com/itunes/ . Accessed 11 September 2013. es_ES
dc.description.references Google (2013) Google play. https://play.google.com/store . Accessed 11 September 2013. es_ES
dc.description.references Rowinski, D., (2013) The data doesn’t lie: iOS apps are better than android. Readwrite mobile. http://readwrite.com/2013/01/30/the-data-doesnt-lie-ios-apps-are-better-quality-than-android . Accessed 11 September 2013. es_ES
dc.description.references Rajan, S. P., and Rajamony, S., Viable investigations and real-time recitation of enhanced ECG-based cardiac telemonitoring system for homecare applications: A systematic evaluation. Telemed J E Health 19(4):278–286, 2013. es_ES
dc.description.references Logan, A. G., Transforming hypertension management using mobile health technology for telemonitoring and self-care support. Can J Cardiol 29(5):579–585, 2013. es_ES
dc.description.references Tamrat, T., and Kachnowski, S., Special delivery: An analysis of mHealth in maternal and newborn health programs and their outcomes around the world. Matern Child Health J 16(5):1092–1101, 2012. es_ES
dc.description.references Martínez-Pérez, B., de la Torre-Díez, I., López-Coronado, M., and Herreros-González, J., Mobile Apps in Cardiology: Review. JMIR Mhealth Uhealth 1(2):e15, 2013. es_ES
dc.description.references de Wit HA, Mestres Gonzalvo C, Hurkens KP, Mulder WJ, Janknegt R, et al., Development of a computer system to support medication reviews in nursing homes. Int J Clin Pharm. 26, 2013. es_ES
dc.description.references Dahlström, O., Thyberg, I., Hass, U., Skogh, T., and Timpka, T., Designing a decision support system for existing clinical organizational structures: Considerations from a rheumatology clinic. J Med Syst 30(5):325–31, 2006. es_ES
dc.description.references Lambin P, Roelofs E, Reymen B, Velazquez ER, Buijsen J, et al., ‘Rapid learning health care in oncology’ - An approach towards decision support systems enabling customised radiotherapy’. Radiother Oncol. 27, 2013. es_ES
dc.description.references Graham, T. A., Bullard, M. J., Kushniruk, A. W., Holroyd, B. R., and Rowe, B. H., Assessing the sensibility of two clinical decision support systems. J Med Syst 32(5):361–8, 2008. es_ES
dc.description.references Martínez-Pérez, B., de la Torre-Díez, I., and López-Coronado, M., Mobile health applications for the most prevalent conditions by the World Health Organization: Review and analysis. J Med Internet Res 15(6):e120, 2013. es_ES
dc.description.references Savel, T. G., Lee, B. A., Ledbetter, G., Brown, S., LaValley, D., et al., PTT advisor: A CDC-supported initiative to develop a mobile clinical laboratory decision support application for the iOS platform. Online J Public Health Inform 5(2):215, 2013. es_ES
dc.description.references Doctor Doctor Inc. (2009) iDoc. iTunes. https://itunes.apple.com/es/app/idoc/id328354734?mt=8 . Accessed 13 September 2013. es_ES
dc.description.references Hardyman, W., Bullock, A., Brown, A., Carter-Ingram, S., and Stacey, M., Mobile technology supporting trainee doctors’ workplace learning and patient care: An evaluation. BMC Med Educ 13:6, 2013. es_ES
dc.description.references Lee, N. J., Chen, E. S., Currie, L. M., Donovan, M., Hall, E. K., et al., The effect of a mobile clinical decision support system on the diagnosis of obesity and overweight in acute and primary care encounters. ANS Adv Nurs Sci 32(3):211–21, 2009. es_ES
dc.description.references Divall, P., Camosso-Stefinovic, J., and Baker, R., The use of personal digital assistants in clinical decision making by health care professionals: A systematic review. Health Informatics J 19(1):16–28, 2013. es_ES
dc.description.references Chignell, M, and Yesha, Y, Lo, J., New methods for clinical decision support in hospitals. In Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative Research (CASCON’10). Toronto, ON; Canada, 2010 es_ES
dc.description.references Charani, E., Kyratsis, Y., Lawson, W., Wickens, H., Brannigan, E. T., et al., An analysis of the development and implementation of a smartphone application for the delivery of antimicrobial prescribing policy: Lessons learnt. J Antimicrob Chemother 68(4):960–7, 2013. es_ES
dc.description.references Klucken, J., Barth, J., Kugler, P., Schlachetzki, J., Henze, T., et al., Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease. PLoS One 8(2):e56956, 2013. es_ES
dc.description.references Hervás, R., Fontecha, J., Ausín, D., Castanedo, F., Bravo, J., et al., Mobile monitoring and reasoning methods to prevent cardiovascular diseases. Sensors (Basel) 13(5):6524–41, 2013. es_ES
dc.description.references Di Noia, T., Ostuni, V. C., Pesce, F., Binetti, G., Naso, N., et al., An end stage kidney disease predictor based on an artificial neural networks ensemble. Expert Syst Appl 40(11):4438–4445, 2013. es_ES
dc.description.references Velikova, M., van Scheltinga, J. T., Lucas, P. J. F., and Spaanderman, M., Exploiting causal functional relationships in Bayesian network modelling for personalised healthcare. Int J Approx Reason, 2013. doi: 10.1016/j.ijar.2013.03.016 . es_ES
dc.description.references Medical Data Solutions (2012) Pediatric clinical pathways. Google play. https://play.google.com/store/apps/details?id=com.ipathways . Accessed 17 September 2013. es_ES
dc.description.references QxMD Medical Software Inc. (2013) Calculate by QxMD. Google play. https://play.google.com/store/apps/details?id=com.qxmd.calculate . Accessed 17 September 2013. es_ES
dc.description.references Skyscape (2012) ACC pocket guides. Google play. https://play.google.com/store/apps/details?id=com.skyscape.packagefiveepkthreeundata.android.voucher.ui . Accessed 17 September 2013. es_ES
dc.description.references Skyscape (2013) Skyscape medical resources. Google play. https://play.google.com/store/apps/details?id=com.skyscape.android.ui&hl=en . Accessed 17 September 2013. es_ES
dc.description.references Pieter Kubben, M.D., (2012) NeuroMind. Google play. https://play.google.com/store/apps/details?id=eu.dign.NeuroMind . Accessed 17 September 2013. es_ES
dc.description.references Mobile Systems, Inc. (2013) 2013 Medical diagnosis TR. Google play. https://play.google.com/store/apps/details?id=com.mobisystems.msdict.embedded.wireless.mcgrawhill.cmdt2013 . Accessed 17 September 2013. es_ES
dc.description.references World Health Organization (2013) The global burden of disease: 2004 update. http://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf . Accessed 18 September 2013. es_ES
dc.description.references Martínez-Pérez, B., de la Torre-Díez, I., Candelas-Plasencia, S., and López-Coronado, M., Development and evaluation of tools for measuring the Quality of Experience (QoE) in mHealth applications. J Med Syst 37(5):9976, 2013. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem