- -

Detection of visual defects in citrus fruits: multivariate image analysis vs graph image segmentation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detection of visual defects in citrus fruits: multivariate image analysis vs graph image segmentation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author López García, Fernando es_ES
dc.contributor.author Andreu García, Gabriela es_ES
dc.contributor.author Valiente González, José Miguel es_ES
dc.contributor.author Atienza Vanacloig, Vicente Luis es_ES
dc.date.accessioned 2014-07-04T18:00:10Z
dc.date.issued 2013
dc.identifier.isbn 978-3-642-40260-9
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/38610
dc.description ¿The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-40261-6_28 es_ES
dc.description.abstract This paper presents an application of visual quality control in orange post-harvesting comparing two different approaches. These approaches correspond to two very different methodologies released in the area of Computer Vision. The first approach is based on Multivariate Image Analysis (MIA) and was originally developed for the detection of defects in random color textures. It uses Principal Component Analysis and the T2 statistic to map the defective areas. The second approach is based on Graph Image Segmentation (GIS). It is an efficient segmentation algorithm that uses a graph-based representation of the image and a predicate to measure the evidence of boundaries between adjacent regions. While the MIA approach performs novelty detection on defects using a trained model of sound color textures, the GIS approach is strictly an unsupervised method with no training required on sound or defective areas. Both methods are compared through experimental work performed on a ground truth of 120 samples of citrus coming from four different cultivars. Although the GIS approach is faster and achieves better results in defect detection, the MIA method provides less false detections and does not need to use the hypothesis that the bigger area in samples always correspond to the non-damaged area es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Computer Analysis of Images and Patterns es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;
dc.rights Reserva de todos los derechos es_ES
dc.subject Fruit Inspection es_ES
dc.subject Automatic Quality Control es_ES
dc.subject Multivariate Image Analysis es_ES
dc.subject Principal Component Analysis es_ES
dc.subject Unsupervised Methods es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Detection of visual defects in citrus fruits: multivariate image analysis vs graph image segmentation es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-642-40261-6
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation López García, F.; Andreu García, G.; Valiente González, JM.; Atienza Vanacloig, VL. (2013). Detection of visual defects in citrus fruits: multivariate image analysis vs graph image segmentation. En Computer Analysis of Images and Patterns. Springer Verlag (Germany). 8047:237-244. doi:10.1007/978-3-642-40261-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 15th International Conference, CAIP 2013 es_ES
dc.relation.conferencedate August 27-29, 2013 es_ES
dc.relation.conferenceplace York, UK es_ES
dc.relation.publisherversion http://link.springer.com/chapter/10.1007/978-3-642-40261-6_28 es_ES
dc.description.upvformatpinicio 237 es_ES
dc.description.upvformatpfin 244 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8047 es_ES
dc.relation.senia 246569


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem