- -

An entropic picture of emergent quantum mechanics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An entropic picture of emergent quantum mechanics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Acosta Iglesias, Dagoberto es_ES
dc.contributor.author Fernández de Córdoba Castellá, Pedro José es_ES
dc.contributor.author Isidro San Juan, José María es_ES
dc.contributor.author González-Santander Martínez, Juan Luis es_ES
dc.date.accessioned 2014-07-09T08:21:15Z
dc.date.issued 2012-08
dc.identifier.issn 0219-8878
dc.identifier.uri http://hdl.handle.net/10251/38688
dc.description.abstract Quantum mechanics emerges à la Verlinde from a foliation of 3 by holographic screens, when regarding the latter as entropy reservoirs that a particle can exchange entropy with. This entropy is quantized in units of Boltzmann's constant k B. The holographic screens can be treated thermodynamically as stretched membranes. On that side of a holographic screen where spacetime has already emerged, the energy representation of thermodynamics gives rise to the usual quantum mechanics. A knowledge of the different surface densities of entropy flow across all screens is equivalent to a knowledge of the quantum-mechanical wavefunction on 3. The entropy representation of thermodynamics, as applied to a screen, can be used to describe quantum mechanics in the absence of spacetime, that is, quantum mechanics beyond a holographic screen, where spacetime has not yet emerged. Our approach can be regarded as a formal derivation of Planck's constant ¿ from Boltzmann's constant k B. © 2012 World Scientific Publishing Company. es_ES
dc.description.sponsorship J.M.I. thanks Max-Planck-Institut fur Gravitationsphysik, Albert-Einstein-Institut (Golm, Germany), for hospitality extended a number of times over the years. This work has been supported by Universidad Politecnica de Valencia under grant PAID-06-09. en_EN
dc.language Inglés es_ES
dc.publisher World Scientific Publishing es_ES
dc.relation.ispartof International Journal of Geometric Methods in Modern Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Black holes es_ES
dc.subject String theory es_ES
dc.subject Gravity es_ES
dc.subject Thermodynamics es_ES
dc.subject Equivalence es_ES
dc.subject Principle es_ES
dc.subject Dynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title An entropic picture of emergent quantum mechanics es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1142/S021988781250048X
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-09/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Acosta Iglesias, D.; Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; González-Santander Martínez, JL. (2012). An entropic picture of emergent quantum mechanics. International Journal of Geometric Methods in Modern Physics. 9(5). https://doi.org/10.1142/S021988781250048X es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1142/S021988781250048X es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 224393
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon. doi:10.1017/cbo9780511535277 es_ES
dc.description.references Banerjee, R., & Majhi, B. R. (2010). Statistical origin of gravity. Physical Review D, 81(12). doi:10.1103/physrevd.81.124006 es_ES
dc.description.references BANERJEE, R. (2010). FROM BLACK HOLES TO EMERGENT GRAVITY. International Journal of Modern Physics D, 19(14), 2365-2369. doi:10.1142/s0218271810018475 es_ES
dc.description.references Bardeen, J. M., Carter, B., & Hawking, S. W. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31(2), 161-170. doi:10.1007/bf01645742 es_ES
dc.description.references Bekenstein, J. D. (1973). Black Holes and Entropy. Physical Review D, 7(8), 2333-2346. doi:10.1103/physrevd.7.2333 es_ES
dc.description.references Blau, M., & Theisen, S. (2009). String theory as a theory of quantum gravity: a status report. General Relativity and Gravitation, 41(4), 743-755. doi:10.1007/s10714-008-0752-z es_ES
dc.description.references Carroll, R. W. (2006). Fluctuations, Information, Gravity and the Quantum Potential. doi:10.1007/1-4020-4025-3 es_ES
dc.description.references Carroll, R. (2010). On The Emergence Theme Of Physics. doi:10.1142/9789814291804 es_ES
dc.description.references Elze, H.-T. (2003). Introduction: Quantum Theory and Beneath? Lecture Notes in Physics, 119-124. doi:10.1007/978-3-540-40968-7_9 es_ES
dc.description.references De Gosson, M. A. (2009). The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg? Foundations of Physics, 39(2), 194-214. doi:10.1007/s10701-009-9272-2 es_ES
dc.description.references De Gosson, M., & Luef, F. (2009). Symplectic capacities and the geometry of uncertainty: The irruption of symplectic topology in classical and quantum mechanics. Physics Reports, 484(5), 131-179. doi:10.1016/j.physrep.2009.08.001 es_ES
dc.description.references Grössing, G. (2008). The vacuum fluctuation theorem: Exact Schrödinger equation via nonequilibrium thermodynamics. Physics Letters A, 372(25), 4556-4563. doi:10.1016/j.physleta.2008.05.007 es_ES
dc.description.references Grössing, G. (2009). On the thermodynamic origin of the quantum potential. Physica A: Statistical Mechanics and its Applications, 388(6), 811-823. doi:10.1016/j.physa.2008.11.033 es_ES
dc.description.references Hawking, S. W. (1975). Particle creation by black holes. Communications In Mathematical Physics, 43(3), 199-220. doi:10.1007/bf02345020 es_ES
dc.description.references ’t Hooft, G. (1985). On the quantum structure of a black hole. Nuclear Physics B, 256, 727-745. doi:10.1016/0550-3213(85)90418-3 es_ES
dc.description.references Hooft, G. ’t. (2007). A mathematical theory for deterministic quantum mechanics. Journal of Physics: Conference Series, 67, 012015. doi:10.1088/1742-6596/67/1/012015 es_ES
dc.description.references ISIDRO, J. M. (2008). QUANTUM MECHANICS AS A SPONTANEOUSLY BROKEN GAUGE THEORY ON A U(1) GERBE. International Journal of Geometric Methods in Modern Physics, 05(02), 233-252. doi:10.1142/s0219887808002722 es_ES
dc.description.references ISIDRO, J. M., DE CÓRDOBA, P. F., RIVERA–REBOLLEDO, J. M., & SANTANDER, J. L. G. (2011). ON THE NONCOMMUTATIVE EIKONAL. International Journal of Geometric Methods in Modern Physics, 08(03), 621-638. doi:10.1142/s0219887811005294 es_ES
dc.description.references Jacobson, T. (1995). Thermodynamics of Spacetime: The Einstein Equation of State. Physical Review Letters, 75(7), 1260-1263. doi:10.1103/physrevlett.75.1260 es_ES
dc.description.references Khrennikov, A. (2010). An analogue of the Heisenberg uncertainty relation in prequantum classical field theory. Physica Scripta, 81(6), 065001. doi:10.1088/0031-8949/81/06/065001 es_ES
dc.description.references Matone, M. (2002). Foundations of Physics Letters, 15(4), 311-328. doi:10.1023/a:1021243926749 es_ES
dc.description.references PADMANABHAN, T. (2002). THERMODYNAMICS OF HORIZONS: A COMPARISON OF SCHWARZSCHILD, RINDLER AND de SITTER SPACETIMES. Modern Physics Letters A, 17(15n17), 923-942. doi:10.1142/s021773230200751x es_ES
dc.description.references PADMANABHAN, T. (2002). IS GRAVITY AN INTRINSICALLY QUANTUM PHENOMENON? DYNAMICS OF GRAVITY FROM THE ENTROPY OF SPACE–TIME AND THE PRINCIPLE OF EQUIVALENCE. Modern Physics Letters A, 17(18), 1147-1158. doi:10.1142/s0217732302007260 es_ES
dc.description.references SINGH, T. P. (2006). STRING THEORY, QUANTUM MECHANICS AND NONCOMMUTATIVE GEOMETRY: A NEW PERSPECTIVE ON THE GRAVITATIONAL DYNAMICS OF D0-BRANES. International Journal of Modern Physics D, 15(12), 2153-2158. doi:10.1142/s021827180600973x es_ES
dc.description.references Singh, T. P. (2008). Noncommutative gravity, a ‘no strings attached’ quantum-classical duality, and the cosmological constant puzzle. General Relativity and Gravitation, 40(10), 2037-2042. doi:10.1007/s10714-008-0670-0 es_ES
dc.description.references Thirring, W. (2002). Quantum Mathematical Physics. doi:10.1007/978-3-662-05008-8 es_ES
dc.description.references Unruh, W. G. (1976). Notes on black-hole evaporation. Physical Review D, 14(4), 870-892. doi:10.1103/physrevd.14.870 es_ES
dc.description.references Volovik, G. E. (2010). ħ as parameter of Minkowski metric in effective theory. JETP Letters, 90(11), 697-704. doi:10.1134/s0021364009230027 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem