Mostrar el registro sencillo del ítem
dc.contributor.author | Acosta Iglesias, Dagoberto | es_ES |
dc.contributor.author | Fernández de Córdoba Castellá, Pedro José | es_ES |
dc.contributor.author | Isidro San Juan, José María | es_ES |
dc.contributor.author | González-Santander Martínez, Juan Luis | es_ES |
dc.date.accessioned | 2014-07-09T08:21:15Z | |
dc.date.issued | 2012-08 | |
dc.identifier.issn | 0219-8878 | |
dc.identifier.uri | http://hdl.handle.net/10251/38688 | |
dc.description.abstract | Quantum mechanics emerges à la Verlinde from a foliation of 3 by holographic screens, when regarding the latter as entropy reservoirs that a particle can exchange entropy with. This entropy is quantized in units of Boltzmann's constant k B. The holographic screens can be treated thermodynamically as stretched membranes. On that side of a holographic screen where spacetime has already emerged, the energy representation of thermodynamics gives rise to the usual quantum mechanics. A knowledge of the different surface densities of entropy flow across all screens is equivalent to a knowledge of the quantum-mechanical wavefunction on 3. The entropy representation of thermodynamics, as applied to a screen, can be used to describe quantum mechanics in the absence of spacetime, that is, quantum mechanics beyond a holographic screen, where spacetime has not yet emerged. Our approach can be regarded as a formal derivation of Planck's constant ¿ from Boltzmann's constant k B. © 2012 World Scientific Publishing Company. | es_ES |
dc.description.sponsorship | J.M.I. thanks Max-Planck-Institut fur Gravitationsphysik, Albert-Einstein-Institut (Golm, Germany), for hospitality extended a number of times over the years. This work has been supported by Universidad Politecnica de Valencia under grant PAID-06-09. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | World Scientific Publishing | es_ES |
dc.relation.ispartof | International Journal of Geometric Methods in Modern Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Black holes | es_ES |
dc.subject | String theory | es_ES |
dc.subject | Gravity | es_ES |
dc.subject | Thermodynamics | es_ES |
dc.subject | Equivalence | es_ES |
dc.subject | Principle | es_ES |
dc.subject | Dynamics | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An entropic picture of emergent quantum mechanics | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1142/S021988781250048X | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-09/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Acosta Iglesias, D.; Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; González-Santander Martínez, JL. (2012). An entropic picture of emergent quantum mechanics. International Journal of Geometric Methods in Modern Physics. 9(5). https://doi.org/10.1142/S021988781250048X | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1142/S021988781250048X | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 224393 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon. doi:10.1017/cbo9780511535277 | es_ES |
dc.description.references | Banerjee, R., & Majhi, B. R. (2010). Statistical origin of gravity. Physical Review D, 81(12). doi:10.1103/physrevd.81.124006 | es_ES |
dc.description.references | BANERJEE, R. (2010). FROM BLACK HOLES TO EMERGENT GRAVITY. International Journal of Modern Physics D, 19(14), 2365-2369. doi:10.1142/s0218271810018475 | es_ES |
dc.description.references | Bardeen, J. M., Carter, B., & Hawking, S. W. (1973). The four laws of black hole mechanics. Communications in Mathematical Physics, 31(2), 161-170. doi:10.1007/bf01645742 | es_ES |
dc.description.references | Bekenstein, J. D. (1973). Black Holes and Entropy. Physical Review D, 7(8), 2333-2346. doi:10.1103/physrevd.7.2333 | es_ES |
dc.description.references | Blau, M., & Theisen, S. (2009). String theory as a theory of quantum gravity: a status report. General Relativity and Gravitation, 41(4), 743-755. doi:10.1007/s10714-008-0752-z | es_ES |
dc.description.references | Carroll, R. W. (2006). Fluctuations, Information, Gravity and the Quantum Potential. doi:10.1007/1-4020-4025-3 | es_ES |
dc.description.references | Carroll, R. (2010). On The Emergence Theme Of Physics. doi:10.1142/9789814291804 | es_ES |
dc.description.references | Elze, H.-T. (2003). Introduction: Quantum Theory and Beneath? Lecture Notes in Physics, 119-124. doi:10.1007/978-3-540-40968-7_9 | es_ES |
dc.description.references | De Gosson, M. A. (2009). The Symplectic Camel and the Uncertainty Principle: The Tip of an Iceberg? Foundations of Physics, 39(2), 194-214. doi:10.1007/s10701-009-9272-2 | es_ES |
dc.description.references | De Gosson, M., & Luef, F. (2009). Symplectic capacities and the geometry of uncertainty: The irruption of symplectic topology in classical and quantum mechanics. Physics Reports, 484(5), 131-179. doi:10.1016/j.physrep.2009.08.001 | es_ES |
dc.description.references | Grössing, G. (2008). The vacuum fluctuation theorem: Exact Schrödinger equation via nonequilibrium thermodynamics. Physics Letters A, 372(25), 4556-4563. doi:10.1016/j.physleta.2008.05.007 | es_ES |
dc.description.references | Grössing, G. (2009). On the thermodynamic origin of the quantum potential. Physica A: Statistical Mechanics and its Applications, 388(6), 811-823. doi:10.1016/j.physa.2008.11.033 | es_ES |
dc.description.references | Hawking, S. W. (1975). Particle creation by black holes. Communications In Mathematical Physics, 43(3), 199-220. doi:10.1007/bf02345020 | es_ES |
dc.description.references | ’t Hooft, G. (1985). On the quantum structure of a black hole. Nuclear Physics B, 256, 727-745. doi:10.1016/0550-3213(85)90418-3 | es_ES |
dc.description.references | Hooft, G. ’t. (2007). A mathematical theory for deterministic quantum mechanics. Journal of Physics: Conference Series, 67, 012015. doi:10.1088/1742-6596/67/1/012015 | es_ES |
dc.description.references | ISIDRO, J. M. (2008). QUANTUM MECHANICS AS A SPONTANEOUSLY BROKEN GAUGE THEORY ON A U(1) GERBE. International Journal of Geometric Methods in Modern Physics, 05(02), 233-252. doi:10.1142/s0219887808002722 | es_ES |
dc.description.references | ISIDRO, J. M., DE CÓRDOBA, P. F., RIVERA–REBOLLEDO, J. M., & SANTANDER, J. L. G. (2011). ON THE NONCOMMUTATIVE EIKONAL. International Journal of Geometric Methods in Modern Physics, 08(03), 621-638. doi:10.1142/s0219887811005294 | es_ES |
dc.description.references | Jacobson, T. (1995). Thermodynamics of Spacetime: The Einstein Equation of State. Physical Review Letters, 75(7), 1260-1263. doi:10.1103/physrevlett.75.1260 | es_ES |
dc.description.references | Khrennikov, A. (2010). An analogue of the Heisenberg uncertainty relation in prequantum classical field theory. Physica Scripta, 81(6), 065001. doi:10.1088/0031-8949/81/06/065001 | es_ES |
dc.description.references | Matone, M. (2002). Foundations of Physics Letters, 15(4), 311-328. doi:10.1023/a:1021243926749 | es_ES |
dc.description.references | PADMANABHAN, T. (2002). THERMODYNAMICS OF HORIZONS: A COMPARISON OF SCHWARZSCHILD, RINDLER AND de SITTER SPACETIMES. Modern Physics Letters A, 17(15n17), 923-942. doi:10.1142/s021773230200751x | es_ES |
dc.description.references | PADMANABHAN, T. (2002). IS GRAVITY AN INTRINSICALLY QUANTUM PHENOMENON? DYNAMICS OF GRAVITY FROM THE ENTROPY OF SPACE–TIME AND THE PRINCIPLE OF EQUIVALENCE. Modern Physics Letters A, 17(18), 1147-1158. doi:10.1142/s0217732302007260 | es_ES |
dc.description.references | SINGH, T. P. (2006). STRING THEORY, QUANTUM MECHANICS AND NONCOMMUTATIVE GEOMETRY: A NEW PERSPECTIVE ON THE GRAVITATIONAL DYNAMICS OF D0-BRANES. International Journal of Modern Physics D, 15(12), 2153-2158. doi:10.1142/s021827180600973x | es_ES |
dc.description.references | Singh, T. P. (2008). Noncommutative gravity, a ‘no strings attached’ quantum-classical duality, and the cosmological constant puzzle. General Relativity and Gravitation, 40(10), 2037-2042. doi:10.1007/s10714-008-0670-0 | es_ES |
dc.description.references | Thirring, W. (2002). Quantum Mathematical Physics. doi:10.1007/978-3-662-05008-8 | es_ES |
dc.description.references | Unruh, W. G. (1976). Notes on black-hole evaporation. Physical Review D, 14(4), 870-892. doi:10.1103/physrevd.14.870 | es_ES |
dc.description.references | Volovik, G. E. (2010). ħ as parameter of Minkowski metric in effective theory. JETP Letters, 90(11), 697-704. doi:10.1134/s0021364009230027 | es_ES |