- -

Unstationary film model for the determination of absolute gas-liquid kinetic rate constants: ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Unstationary film model for the determination of absolute gas-liquid kinetic rate constants: ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferre Aracil, Jesús es_ES
dc.contributor.author Cardona Navarrete, Salvador Cayetano es_ES
dc.contributor.author López Pérez, Maria Fernanda es_ES
dc.contributor.author Abad Sempere, Antonio es_ES
dc.contributor.author Navarro-Laboulais, J. es_ES
dc.date.accessioned 2014-07-10T08:46:17Z
dc.date.issued 2013-11-01
dc.identifier.issn 0191-9512
dc.identifier.uri http://hdl.handle.net/10251/38710
dc.description.abstract A method for the determination of absolute kinetic rate constants is proposed using an unstationary film model. This methodology avoids the experimental determination of parameters like the enhancement factor or the Hatta number which are usually model-dependent. The mathematical model is general for gas-liquid systems with irreversible second order reactions. An optimization procedure based on artificial neural networks is used to estimate the initial guess of the parameters and the subsequent application of Gauss-Newton algorithm for the final nonlinear parameter estimation. The model is tested with the ozonation reaction of Acid Red 27, Acid Orange 7 and Acid Blue 129. The second-order kinetic rate constants for the direct reaction with O3 are 1615±93, 609±83, and 49±2M−1s−1, respectively es_ES
dc.description.sponsorship JF acknowledges the support of the doctoral fellowship from the Universitat Politecnica de Valencia (UPV-PAID-FPI-2010-04). en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof Ozone: Science and Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ozone es_ES
dc.subject Azo Dyes es_ES
dc.subject Acid Red 27 es_ES
dc.subject Acid Orange 7 es_ES
dc.subject Acid Blue 129 es_ES
dc.subject Ozonation, Mathematical Modeling es_ES
dc.subject Absolute Kinetic Rate Constant Determination es_ES
dc.subject Artificial Neural Network es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Unstationary film model for the determination of absolute gas-liquid kinetic rate constants: ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/01919512.2013.815104
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-FPI-2010-04/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Ferre Aracil, J.; Cardona Navarrete, SC.; López Pérez, MF.; Abad Sempere, A.; Navarro-Laboulais, J. (2013). Unstationary film model for the determination of absolute gas-liquid kinetic rate constants: ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129. Ozone: Science and Engineering. 35(6):423-437. https://doi.org/10.1080/01919512.2013.815104 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.tandfonline.com/doi/abs/10.1080/01919512.2013.815104#.U4X4g3brxL0 es_ES
dc.description.upvformatpinicio 423 es_ES
dc.description.upvformatpfin 437 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 253048
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Biń, A. K. (2006). Ozone Solubility in Liquids. Ozone: Science & Engineering, 28(2), 67-75. doi:10.1080/01919510600558635 es_ES
dc.description.references Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2010). On bubble column reactor design for the determination of kinetic rate constants in gas-liquid systems. The Canadian Journal of Chemical Engineering, 88(4), 491-502. doi:10.1002/cjce.20327 es_ES
dc.description.references Chang, C. S., & Rochelle, G. T. (1982). Mass transfer enhanced by equilibrium reactions. Industrial & Engineering Chemistry Fundamentals, 21(4), 379-385. doi:10.1021/i100008a011 es_ES
dc.description.references Dachipally, P., & Jonnalagadda, S. B. (2011). Kinetics of ozone-initiated oxidation of textile dye, Amaranth in aqueous systems. Journal of Environmental Science and Health, Part A, 46(8), 887-897. doi:10.1080/10934529.2011.580201 es_ES
dc.description.references Danckwerts, P. V., & Lannus, A. (1970). Gas-Liquid Reactions. Journal of The Electrochemical Society, 117(10), 369C. doi:10.1149/1.2407312 es_ES
dc.description.references Das, A. K., & Das, P. K. (2009). Bubble Evolution through a Submerged Orifice Using Smoothed Particle Hydrodynamics: Effect of Different Thermophysical Properties. Industrial & Engineering Chemistry Research, 48(18), 8726-8735. doi:10.1021/ie900350h es_ES
dc.description.references Ferrell, R. T., & Himmelblau, D. M. (1967). Diffusion coefficients of nitrogen and oxygen in water. Journal of Chemical & Engineering Data, 12(1), 111-115. doi:10.1021/je60032a036 es_ES
dc.description.references Gerlach, D., Alleborn, N., Buwa, V., & Durst, F. (2007). Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate. Chemical Engineering Science, 62(7), 2109-2125. doi:10.1016/j.ces.2006.12.061 es_ES
dc.description.references Glasscock, D. A., & Rochelle, G. T. (1989). Numerical simulation of theories for gas absorption with chemical reaction. AIChE Journal, 35(8), 1271-1281. doi:10.1002/aic.690350806 es_ES
dc.description.references Gomes, A. C., Nunes, J. C., & Simões, R. M. S. (2010). Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system. Journal of Hazardous Materials, 178(1-3), 57-65. doi:10.1016/j.jhazmat.2010.01.043 es_ES
dc.description.references Gupta, P., Al-Dahhan, M. H., Duduković, M. P., & Mills, P. L. (2000). A novel signal filtering methodology for obtaining liquid phase tracer responses from conductivity probes. Flow Measurement and Instrumentation, 11(2), 123-131. doi:10.1016/s0955-5986(99)00025-4 es_ES
dc.description.references Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—I. Water Research, 17(2), 173-183. doi:10.1016/0043-1354(83)90098-2 es_ES
dc.description.references Jamialahmadi, M., Zehtaban, M. R., Müller-Steinhagen, H., Sarrafi, A., & Smith, J. M. (2001). Study of Bubble Formation Under Constant Flow Conditions. Chemical Engineering Research and Design, 79(5), 523-532. doi:10.1205/02638760152424299 es_ES
dc.description.references Johnson, P. N., & Davis, R. A. (1996). Diffusivity of Ozone in Water. Journal of Chemical & Engineering Data, 41(6), 1485-1487. doi:10.1021/je9602125 es_ES
dc.description.references King, C. J. (1966). Turbulent Liquid Phase Mass Transfer at Free Gas-Liquid Interface. Industrial & Engineering Chemistry Fundamentals, 5(1), 1-8. doi:10.1021/i160017a001 es_ES
dc.description.references Ledakowicz, S., Maciejewska, R., Perkowski, J., & Bin, A. (2001). Ozonation of Reactive Blue 81 in the bubble column. Water Science and Technology, 44(5), 47-52. doi:10.2166/wst.2001.0248 es_ES
dc.description.references Lewis, W. K., & Whitman, W. G. (1924). Principles of Gas Absorption. Industrial & Engineering Chemistry, 16(12), 1215-1220. doi:10.1021/ie50180a002 es_ES
dc.description.references Lopez, A., Benbelkacem, H., Pic, J. ‐S., & Debellefontaine, H. (2004). Oxidation pathways for ozonation of azo dyes in a semi‐batch reactor: A kinetic parameters approach. Environmental Technology, 25(3), 311-321. doi:10.1080/09593330409355465 es_ES
dc.description.references Meldon, J. H., Olawoyin, O. O., & Bonanno, D. (2007). Analysis of Mass Transfer with Reversible Chemical Reaction†. Industrial & Engineering Chemistry Research, 46(19), 6140-6146. doi:10.1021/ie0705397 es_ES
dc.description.references Navarro-Laboulais, J., Cardona, S. C., Torregrosa, J. I., Abad, A., & López, F. (2006). Structural identifiability analysis of the dynamic gas–liquid film model. AIChE Journal, 52(8), 2851-2863. doi:10.1002/aic.10901 es_ES
dc.description.references Navarro-Laboulais, J., Cardona, S. C., Torregrosa, J. I., Abad, A., & López, F. (2008). Practical identifiability analysis in dynamic gas–liquid reactors. Computers & Chemical Engineering, 32(10), 2382-2394. doi:10.1016/j.compchemeng.2007.12.004 es_ES
dc.description.references Rapp, T., & Wiesmann, U. (2007). Ozonation of C.I. Reactive Black 5 and Indigo. Ozone: Science & Engineering, 29(6), 493-502. doi:10.1080/01919510701617959 es_ES
dc.description.references Tanaka, M., Girard, G., Davis, R., Peuto, A., & Bignell, N. (2001). Recommended table for the density of water between 0  C and 40  C based on recent experimental reports. Metrologia, 38(4), 301-309. doi:10.1088/0026-1394/38/4/3 es_ES
dc.description.references Tizaoui, C., & Grima, N. (2011). Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution. Chemical Engineering Journal, 173(2), 463-473. doi:10.1016/j.cej.2011.08.014 es_ES
dc.description.references Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37(7), 1443-1467. doi:10.1016/s0043-1354(02)00457-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem