- -

Formation and stability of 3-5 atom gold clusters from gold complexes during the catalytic reaction: dependence on ligands and counteranions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Formation and stability of 3-5 atom gold clusters from gold complexes during the catalytic reaction: dependence on ligands and counteranions

Show full item record

Oliver Meseguer, J.; Leyva Perez, A.; Al-Resayes, SI.; Corma Canós, A. (2013). Formation and stability of 3-5 atom gold clusters from gold complexes during the catalytic reaction: dependence on ligands and counteranions. Chemical Communications. 49(71):7782-7784. doi:10.1039/c3cc44104k

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/38823

Files in this item

Item Metadata

Title: Formation and stability of 3-5 atom gold clusters from gold complexes during the catalytic reaction: dependence on ligands and counteranions
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
Gold complexes and salts decompose to catalytically active 3¿5 atom gold clusters during the one-pot acylation¿hydration of propargyl alcohols. Kinetic and spectroscopic studies show that released ligands and counteranions ...[+]
Copyrigths: Cerrado
Source:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c3cc44104k
Publisher:
Royal Society of Chemistry
Publisher version: http://pubs.rsc.org/en/Content/ArticleLanding/2013/CC/c3cc44104k#!divAbstract
Thanks:
J. O.-M. thanks ITQ for a postgraduate scholarship. A. L.-P. thanks ITQ for a contract. Financial support by the Severo Ochoa program and Consolider-Ingenio 2010 (proyecto MULTICAT) from MCIINN, and King Saud University ...[+]
Type: Artículo

References

Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x

Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u

Leyva-Pérez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.201101726 [+]
Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x

Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u

Leyva-Pérez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.201101726

Veitch, G. E., Beckmann, E., Burke, B. J., Boyer, A., Maslen, S. L., & Ley, S. V. (2007). Synthesis of Azadirachtin: A Long but Successful Journey. Angewandte Chemie International Edition, 46(40), 7629-7632. doi:10.1002/anie.200703027

Trost, B. M., & Dong, G. (2008). Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches. Nature, 456(7221), 485-488. doi:10.1038/nature07543

Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813

Hashmi, A. S. K. (2012). Sub-Nanosized Gold Catalysts. Science, 338(6113), 1434-1434. doi:10.1126/science.1231901

Walter, M., Akola, J., Lopez-Acevedo, O., Jadzinsky, P. D., Calero, G., Ackerson, C. J., … Hakkinen, H. (2008). A unified view of ligand-protected gold clusters as superatom complexes. Proceedings of the National Academy of Sciences, 105(27), 9157-9162. doi:10.1073/pnas.0801001105

Guo, W., Yuan, J., & Wang, E. (2012). Organic-soluble fluorescent Au8 clusters generated from heterophase ligand-exchange induced etching of gold nanoparticles and their electrochemiluminescence. Chemical Communications, 48(25), 3076. doi:10.1039/c2cc17155d

Wang, W., Xu, B., & Hammond, G. B. (2009). Efficient Synthesis of γ-Keto Esters through Neighboring Carbonyl Group-Assisted Regioselective Hydration of 3-Alkynoates. The Journal of Organic Chemistry, 74(4), 1640-1643. doi:10.1021/jo802450n

Ghosh, N., Nayak, S., & Sahoo, A. K. (2011). Gold-Catalyzed Regioselective Hydration of Propargyl Acetates Assisted by a Neighboring Carbonyl Group: Access to α-Acyloxy Methyl Ketones and Synthesis of (±)-Actinopolymorphol B†. The Journal of Organic Chemistry, 76(2), 500-511. doi:10.1021/jo101995g

Leyva, A., Zhang, X., & Corma, A. (2009). Chemoselective hydroboration of alkynes vs. alkenes over gold catalysts. Chemical Communications, (33), 4947. doi:10.1039/b901953g

Leyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491

Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094

De Silva, N., Ha, J.-M., Solovyov, A., Nigra, M. M., Ogino, I., Yeh, S. W., … Katz, A. (2010). A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nature Chemistry, 2(12), 1062-1068. doi:10.1038/nchem.860

Hutchings, G. J. (2010). Access granted. Nature Chemistry, 2(12), 1005-1006. doi:10.1038/nchem.868

Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P., & Hutchings, G. J. (2008). Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science, 321(5894), 1331-1335. doi:10.1126/science.1159639

Aguilar-Guerrero, V., & Gates, B. C. (2007). Genesis of a highly active cerium oxide-supported gold catalyst for CO oxidation. Chemical Communications, (30), 3210. doi:10.1039/b705562e

Uzun, A., Ortalan, V., Hao, Y., Browning, N. D., & Gates, B. C. (2009). Nanoclusters of Gold on a High-Area Support: Almost Uniform Nanoclusters Imaged by Scanning Transmission Electron Microscopy. ACS Nano, 3(11), 3691-3695. doi:10.1021/nn9008142

Tsukuda, T. (2012). Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters. Bulletin of the Chemical Society of Japan, 85(2), 151-168. doi:10.1246/bcsj.20110227

Sankar, M., He, Q., Morad, M., Pritchard, J., Freakley, S. J., Edwards, J. K., … Hutchings, G. J. (2012). Synthesis of Stable Ligand-free Gold–Palladium Nanoparticles Using a Simple Excess Anion Method. ACS Nano, 6(8), 6600-6613. doi:10.1021/nn302299e

Nishigaki, J., Tsunoyama, R., Tsunoyama, H., Ichikuni, N., Yamazoe, S., Negishi, Y., … Tsukuda, T. (2012). A New Binding Motif of Sterically Demanding Thiolates on a Gold Cluster. Journal of the American Chemical Society, 134(35), 14295-14297. doi:10.1021/ja305477a

Gaillard, S., Cazin, C. S. J., & Nolan, S. P. (2011). N-Heterocyclic Carbene Gold(I) and Copper(I) Complexes in C–H Bond Activation. Accounts of Chemical Research, 45(6), 778-787. doi:10.1021/ar200188f

Gómez-Suárez, A., Oonishi, Y., Meiries, S., & Nolan, S. P. (2013). [{Au(NHC)}2(μ-OH)][BF4]: Silver-Free and Acid-Free Catalysts for Water-Inclusive Gold-Mediated Organic Transformations. Organometallics, 32(4), 1106-1111. doi:10.1021/om301249r

Hooper, T. N., Green, M., & Russell, C. A. (2010). Cationic Au(i) alkyne complexes: synthesis, structure and reactivity. Chemical Communications, 46(13), 2313. doi:10.1039/b923900f

[-]

This item appears in the following Collection(s)

Show full item record