Mostrar el registro sencillo del ítem
dc.contributor.author | Climent, Salvador | es_ES |
dc.contributor.author | Sánchez Matías, Antonio María | es_ES |
dc.contributor.author | Blanc Clavero, Sara | es_ES |
dc.contributor.author | Capella Hernández, Juan Vicente | es_ES |
dc.contributor.author | Ors Carot, Rafael | es_ES |
dc.date.accessioned | 2014-07-22T11:38:48Z | |
dc.date.issued | 2013-10 | |
dc.identifier.issn | 1532-0634 | |
dc.identifier.uri | http://hdl.handle.net/10251/38952 | |
dc.description.abstract | This paper presents a new energy-harvesting model for a network simulator that implements super-capacitor energy storage with solar energy-harvesting recharge. The model is easily extensible, and other energyharvesting systems, or different energy storages, can be further developed. Moreover, code can be conveniently reused as the implementation is entirely uncoupled from the radio and node models. Real radiation data are obtained from available online databases in order to dynamically calculate super-capacitor charge and discharge. Such novelty enables the evaluation of energy evolution on a network of sensor nodes at various physical world locations and during different seasons. The model is validated against a real and fully working prototype, and good result correlation is shown. Furthermore, various experiments using the ns-3 simulator were conducted, demonstrating the utility of the model in assisting the research and development of the deployment of everlasting wireless sensor networks. | es_ES |
dc.description.sponsorship | This work was supported by the CICYT (research projects CTM2011-29691-C02-01 and TIN2011-28435-C03-01) and UPV research project SP20120889. | en_EN |
dc.language | Español | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Concurrency and Computation: Practice and Experience | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Wireless sensor networks | es_ES |
dc.subject | Energy-harvesting, ns-3 | es_ES |
dc.subject | Energy models | es_ES |
dc.subject | Simulation | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Wireless sensor networks with energy harvesting: Modeling and simulation based on a practical architecture using real radiation levels | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cpe.3151 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2011-28435-C03-01/ES/INVESTIGACION EN LA MEJORA DE LA CONFIABILIDAD DE APLICACIONES BASADAS EN WSN MEDIANTE EL DESARROLLO DE UNA PLATAFORMA HIBRIDA DE MONITORIZACION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2011-29691-C02-01/ES/SENSORIZACION AMBIENTAL SUBACUATICA PARA LA INSPECCION Y MONITORIZACION DE EXPLOTACIONES DE ACUICULTURA MARINA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120889/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Climent, S.; Sánchez Matías, AM.; Blanc Clavero, S.; Capella Hernández, JV.; Ors Carot, R. (2013). Wireless sensor networks with energy harvesting: Modeling and simulation based on a practical architecture using real radiation levels. Concurrency and Computation: Practice and Experience. 1-19. https://doi.org/10.1002/cpe.3151 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/cpe.3151/pdf | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 259400 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Akyildiz, I. F., & Vuran, M. C. (2010). Wireless Sensor Networks. doi:10.1002/9780470515181 | es_ES |
dc.description.references | Seah, W. K. G., Tan, Y. K., & Chan, A. T. S. (2012). Research in Energy Harvesting Wireless Sensor Networks and the Challenges Ahead. Autonomous Sensor Networks, 73-93. doi:10.1007/5346_2012_27 | es_ES |
dc.description.references | Vullers, R., Schaijk, R., Visser, H., Penders, J., & Hoof, C. (2010). Energy Harvesting for Autonomous Wireless Sensor Networks. IEEE Solid-State Circuits Magazine, 2(2), 29-38. doi:10.1109/mssc.2010.936667 | es_ES |
dc.description.references | Ammar, Y., Buhrig, A., Marzencki, M., Charlot, B., Basrour, S., Matou, K., & Renaudin, M. (2005). Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. Proceedings of the 2005 joint conference on Smart objects and ambient intelligence innovative context-aware services: usages and technologies - sOc-EUSAI ’05. doi:10.1145/1107548.1107618 | es_ES |
dc.description.references | Vijayaraghavan, K., & Rajamani, R. (2007). Active Control Based Energy Harvesting for Battery-Less Wireless Traffic Sensors. 2007 American Control Conference. doi:10.1109/acc.2007.4282842 | es_ES |
dc.description.references | Bottner, H., Nurnus, J., Gavrikov, A., Kuhner, G., Jagle, M., Kunzel, C., … Schlereth, K.-H. (2004). New thermoelectric components using microsystem technologies. Journal of Microelectromechanical Systems, 13(3), 414-420. doi:10.1109/jmems.2004.828740 | es_ES |
dc.description.references | Mateu L Codrea C Lucas N Pollak M Spies P Energy harvesting for wireless communication systems using thermogenerators Conference on Design of Circuits and Integrated Systems (DCIS) 2006 | es_ES |
dc.description.references | AEMet Agencia Estatal de Meteorolgía 2013 http//www.aemet.es | es_ES |
dc.description.references | PANGAEA Data Publisher for Earth & Environmental Science 2013 http://www.pangaea.de/ | es_ES |
dc.description.references | Zeng, K., Ren, K., Lou, W., & Moran, P. J. (2007). Energy aware efficient geographic routing in lossy wireless sensor networks with environmental energy supply. Wireless Networks, 15(1), 39-51. doi:10.1007/s11276-007-0022-0 | es_ES |
dc.description.references | Hasenfratz, D., Meier, A., Moser, C., Chen, J.-J., & Thiele, L. (2010). Analysis, Comparison, and Optimization of Routing Protocols for Energy Harvesting Wireless Sensor Networks. 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. doi:10.1109/sutc.2010.35 | es_ES |
dc.description.references | Noh, D. K., & Hur, J. (2012). Using a dynamic backbone for efficient data delivery in solar-powered WSNs. Journal of Network and Computer Applications, 35(4), 1277-1284. doi:10.1016/j.jnca.2012.01.012 | es_ES |
dc.description.references | Lin, L., Shroff, N. B., & Srikant, R. (2007). Asymptotically Optimal Energy-Aware Routing for Multihop Wireless Networks With Renewable Energy Sources. IEEE/ACM Transactions on Networking, 15(5), 1021-1034. doi:10.1109/tnet.2007.896173 | es_ES |
dc.description.references | Ferry, N., Ducloyer, S., Julien, N., & Jutel, D. (2011). Power/Energy Estimator for Designing WSN Nodes with Ambient Energy Harvesting Feature. EURASIP Journal on Embedded Systems, 2011(1), 242386. doi:10.1155/2011/242386 | es_ES |
dc.description.references | Glaser, J., Weber, D., Madani, S., & Mahlknecht, S. (2008). Power Aware Simulation Framework for Wireless Sensor Networks and Nodes. EURASIP Journal on Embedded Systems, 2008(1), 369178. doi:10.1155/2008/369178 | es_ES |
dc.description.references | De Mil, P., Jooris, B., Tytgat, L., Catteeuw, R., Moerman, I., Demeester, P., & Kamerman, A. (2010). Design and Implementation of a Generic Energy-Harvesting Framework Applied to the Evaluation of a Large-Scale Electronic Shelf-Labeling Wireless Sensor Network. EURASIP Journal on Wireless Communications and Networking, 2010(1). doi:10.1155/2010/343690 | es_ES |
dc.description.references | Castagnetti, A., Pegatoquet, A., Belleudy, C., & Auguin, M. (2012). A framework for modeling and simulating energy harvesting WSN nodes with efficient power management policies. EURASIP Journal on Embedded Systems, 2012(1). doi:10.1186/1687-3963-2012-8 | es_ES |
dc.description.references | Alippi, C., & Galperti, C. (2008). An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(6), 1742-1750. doi:10.1109/tcsi.2008.922023 | es_ES |
dc.description.references | Xiaofan Jiang, Polastre, J., & Culler, D. (s. f.). Perpetual environmentally powered sensor networks. IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005. doi:10.1109/ipsn.2005.1440974 | es_ES |
dc.description.references | Simjee, F., & Chou, P. H. (2006). Everlast. Proceedings of the 2006 international symposium on Low power electronics and design - ISLPED ’06. doi:10.1145/1165573.1165619 | es_ES |
dc.description.references | Sánchez, A., Climent, S., Blanc, S., Capella, J. V., & Piqueras, I. (2011). WSN with energy-harvesting. Proceedings of the 6th ACM workshop on Performance monitoring and measurement of heterogeneous wireless and wired networks - PM2HW2N ’11. doi:10.1145/2069087.2069091 | es_ES |
dc.description.references | Renner C Jessen J Turau V Lifetime prediction for supercapacitor-powered wireless sensor nodes Proc. of the 8th GI/ITG KuVS Fachgesprächİ Drahtlose Sensornetze(FGSN09) 2009 | es_ES |
dc.description.references | TI Analog, Embedded Processing, Semiconductor Company, Texas Instruments 2013 http//www.ti.com | es_ES |
dc.description.references | WSNVAL Wireless Sensor Networks Valencia 2013 www.wsnval.com | es_ES |
dc.description.references | Sanchez, A., Blanc, S., Yuste, P., & Serrano, J. J. (2011). RFID Based Acoustic Wake-Up System for Underwater Sensor Networks. 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems. doi:10.1109/mass.2011.103 | es_ES |
dc.description.references | Fan, K.-W., Zheng, Z., & Sinha, P. (2008). Steady and fair rate allocation for rechargeable sensors in perpetual sensor networks. Proceedings of the 6th ACM conference on Embedded network sensor systems - SenSys ’08. doi:10.1145/1460412.1460436 | es_ES |
dc.description.references | Moser, C., Thiele, L., Brunelli, D., & Benini, L. (2010). Adaptive Power Management for Environmentally Powered Systems. IEEE Transactions on Computers, 59(4), 478-491. doi:10.1109/tc.2009.158 | es_ES |