- -

Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours

Show simple item record

Files in this item

dc.contributor.author Neto, Julio M. es_ES
dc.contributor.author Gordinho, Luis es_ES
dc.contributor.author Belda, Eduardo J. es_ES
dc.contributor.author Marín Villora, Marcial es_ES
dc.contributor.author Monrós González, Juan Salvador es_ES
dc.contributor.author Fearon, Peter es_ES
dc.contributor.author Crates, Ross es_ES
dc.date.accessioned 2014-08-29T11:51:37Z
dc.date.available 2014-08-29T11:51:37Z
dc.date.issued 2013-05
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/39289
dc.description.abstract [EN] Divergent selection and local adaptation are responsible for many phenotypic differences between populations, potentially leading to speciation through the evolution of reproductive barriers. Here we evaluated the morphometric divergence among west European populations of Reed Bunting in order to determine the extent of local adaptation relative to two important selection pressures often associated with speciation in birds: migration and diet. We show that, as expected by theory, migratory E. s. schoeniclus had longer and more pointed wings and a slightly smaller body mass than the resident subspecies, with the exception of E. s. lusitanica, which despite having rounder wings was the smallest of all subspecies. Tail length, however, did not vary according to the expectation (shorter tails in migrants) probably because it is strongly correlated with wing length and might take longer to evolve. E. s. witherbyi, which feed on insects hiding inside reed stems during the winter, had a very thick, stubby bill. In contrast, northern populations, which feed on seeds, had thinner bills. Despite being much smaller, the southern E. s. lusitanica had a significantly thicker, longer bill than migratory E. s. schoeniclus, whereas birds from the UK population had significantly shorter, thinner bills. Geometric morphometric analyses revealed that the southern subspecies have a more convex culmen than E. s. schoeniclus, and E. s. lusitanica differs from the nominate subspecies in bill shape to a greater extent than in linear bill measurements, especially in males. Birds with a more convex culmen are thought to exert a greater strength at the bill tip, which is in agreement with their feeding technique. Overall, the three subspecies occurring in Western Europe differ in a variety of traits following the patterns predicted from their migratory and foraging behaviours, strongly suggesting that these birds have became locally adapted through natural selection. es_ES
dc.description.sponsorship Some fieldwork in Portugal was supported financially by ICETA, University of Porto. LG and JMN were supported financially by the Portuguese Foundation for Science and Technology through grants SFRH/BD/64645/2009 and SFRH/BPD/40667/2007, respectively. JSM and EJB were funded by the projects CGL2005-02041/BOS and CGL2010-21933-C02-02 granted by Ministerio de Ciencia e Innovacion (Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bill size es_ES
dc.subject Sexual-dimorphism es_ES
dc.subject Darwins finches es_ES
dc.subject Marsh sparrows es_ES
dc.subject Wing-length es_ES
dc.subject Body-size es_ES
dc.subject Speciation es_ES
dc.subject Morphology es_ES
dc.subject Evolution es_ES
dc.subject Selection es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification ZOOLOGIA es_ES
dc.title Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0063248
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F64645%2F2009/PT/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CGL2005-02041/ES/CONSERVACION Y GESTION DE LAS POBLACIONES DE ESCRIBANO PALUSTRE EMBERIZA SCHOENICLUS WITHERBYI EN LA PENINSULA IBERICA: APLICACION DE MODELOS PREDICTIVOS DE DISTRIBUCION, DEMOGRAFIA Y GENETICA DE POBLACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2010-21933-C02-02/ES/EFECTOS DEL CALENTAMIENTO GLOBAL SOBRE LA FECUNDIDAD Y LA SUPERVIVENCIA DE PASERIFORMES MEDITERRANEOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F40667%2F2007/PT/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Neto, JM.; Gordinho, L.; Belda, EJ.; Marín Villora, M.; Monrós González, JS.; Fearon, P.; Crates, R. (2013). Phenotypic Divergence among West European Populations of Reed Bunting Emberiza schoeniclus: The Effects of Migratory and Foraging Behaviours. PLoS ONE. 8(5):1-11. https://doi.org/10.1371/journal.pone.0063248 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0063248 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 252214
dc.identifier.pmid 23667594 en_EN
dc.identifier.pmcid PMC3646775 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Universidade do Porto
dc.description.references Van Doorn, G. S., Edelaar, P., & Weissing, F. J. (2009). On the Origin of Species by Natural and Sexual Selection. Science, 326(5960), 1704-1707. doi:10.1126/science.1181661 es_ES
dc.description.references Winker, K. (2010). Chapter 1: Subspecies Represent Geographically Partitioned Variation, A Gold Mine of Evolutionary Biology, and a Challenge for Conservation. Ornithological Monographs, 67(1), 6-23. doi:10.1525/om.2010.67.1.6 es_ES
dc.description.references Servedio, M. R., Doorn, G. S. V., Kopp, M., Frame, A. M., & Nosil, P. (2011). Magic traits in speciation: ‘magic’ but not rare? Trends in Ecology & Evolution, 26(8), 389-397. doi:10.1016/j.tree.2011.04.005 es_ES
dc.description.references Via, S. (2009). Natural selection in action during speciation. Proceedings of the National Academy of Sciences, 106(Supplement_1), 9939-9946. doi:10.1073/pnas.0901397106 es_ES
dc.description.references Shaw, K. L., & Mullen, S. P. (2011). Genes versus phenotypes in the study of speciation. Genetica, 139(5), 649-661. doi:10.1007/s10709-011-9562-4 es_ES
dc.description.references Bearhop, S. (2005). Assortative Mating as a Mechanism for Rapid Evolution of a Migratory Divide. Science, 310(5747), 502-504. doi:10.1126/science.1115661 es_ES
dc.description.references Pérez-Tris, J., Ramírez, Á., & Tellería, J. L. (2003). Are Iberian ChiffchaffsPhylloscopus (collybita) brehmiilong-distance migrants? An analysis of flight-related morphology. Bird Study, 50(2), 146-152. doi:10.1080/00063650309461306 es_ES
dc.description.references Irwin DE, Irwin JH (2005) Siberian migratory divides. The role of seasonal migration in speciation. In: Greenberg R, Marra PP, editors. Birds of Two Worlds. Johns Hopkins University Press, Baltimore, Maryland. 27–40. es_ES
dc.description.references BENSCH, S., GRAHN, M., MÜLLER, N., GAY, L., & ÅKESSON, S. (2009). Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Molecular Ecology, 18(14), 3087-3096. doi:10.1111/j.1365-294x.2009.04210.x es_ES
dc.description.references Rohwer, S., & Irwin, D. E. (2011). Molt, Orientation, and Avian Speciation. The Auk, 128(2), 419-425. doi:10.1525/auk.2011.10176 es_ES
dc.description.references Grant, P. R. (2002). Unpredictable Evolution in a 30-Year Study of Darwin’s Finches. Science, 296(5568), 707-711. doi:10.1126/science.1070315 es_ES
dc.description.references Ryan, P. G., Bloomer, P., Moloney, C. L., Grant, T. J., & Delport, W. (2007). Ecological Speciation in South Atlantic Island Finches. Science, 315(5817), 1420-1423. doi:10.1126/science.1138829 es_ES
dc.description.references Benkman, C. W. (2003). DIVERGENT SELECTION DRIVES THE ADAPTIVE RADIATION OF CROSSBILLS. Evolution, 57(5), 1176-1181. doi:10.1111/j.0014-3820.2003.tb00326.x es_ES
dc.description.references Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences, 103(9), 3209-3213. doi:10.1073/pnas.0508653103 es_ES
dc.description.references Cramp S, Perrins CM (1994) Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palaearctic. Volume 9: Buntings and new world warblers. Oxford University Press, Oxford. 522 p. es_ES
dc.description.references Byers C, Curson J, Olson U (1995) Sparrows and Buntings: A Guide to the Sparrows and Buntings of North America and the World. Houghton Mifflin, New York. es_ES
dc.description.references MATESSI, G., GRIGGIO, M., & PILASTRO, A. (2002). The geographical distribution of populations of the large-billed subspecies of reed bunting matches that of its main winter food. Biological Journal of the Linnean Society, 75(1), 21-26. doi:10.1046/j.1095-8312.2002.00003.x es_ES
dc.description.references Orłowski, G., & Czarnecka, J. (2007). Winter diet of reed bunting Emberiza schoeniclus in fallow and stubble fields. Agriculture, Ecosystems & Environment, 118(1-4), 244-248. doi:10.1016/j.agee.2006.05.026 es_ES
dc.description.references Clements JF, Schulenberg TS, Iliff MJ, Sullivan BL, Wood CL, et al.. (2011) The Clements checklist of birds of the world: Version 6.6. Available: https://www.birds.cornell.edu/clementschecklist/download/ es_ES
dc.description.references del Hoyo J, Elliot A, Christie DA (ed) (2011) Handbook of the birds of the world. Vol. 16. Lynx edicions, Barcelona. 894 p. es_ES
dc.description.references Steinbacher, F. (1930). Bemerkungen zur Systematik der Rohrammern,Emberiza schoeniclus (L.). Journal für Ornithologie, 78(4), 471-487. doi:10.1007/bf01953149 es_ES
dc.description.references Atienza JC (2006) El escribano palustre em España. I Censo nacional (2005). SEO/BirdLife, Madrid. 72 p. es_ES
dc.description.references Copete, J. L., Mariné, R., Bigas, D., & Martínez-Vilalta, A. (1999). Differences in wing shape between sedentary and migratory Reed BuntingsEmberiza schoeniclus. Bird Study, 46(1), 100-103. doi:10.1080/00063659909461119 es_ES
dc.description.references GRAPPUTO, A., PILASTRO, A., & MARIN, G. (1998). Genetic variation and bill size dimorphism in a passerine bird, the reed bunting Emberiza schoeniclus. Molecular Ecology, 7(9), 1173-1182. doi:10.1046/j.1365-294x.1998.00441.x es_ES
dc.description.references Zink, R. M., Pavlova, A., Drovetski, S., & Rohwer, S. (2008). Mitochondrial phylogeographies of five widespread Eurasian bird species. Journal of Ornithology, 149(3), 399-413. doi:10.1007/s10336-008-0276-z es_ES
dc.description.references Kvist, L., Ponnikas, S., Belda, E. J., Encabo, I., Martínez, E., Onrubia, A., … Monrós, J. S. (2011). Endangered subspecies of the Reed Bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures. Journal of Ornithology, 152(3), 681-693. doi:10.1007/s10336-011-0646-9 es_ES
dc.description.references Matessi, G., Dabelsteen, T., & Pilastro, A. (2000). Responses to playback of different subspecies songs in the Reed Bunting Emberiza schoeniclus. Journal of Avian Biology, 31(1), 96-101. doi:10.1034/j.1600-048x.2000.310113.x es_ES
dc.description.references Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature, 409(6817), 185-188. doi:10.1038/35051570 es_ES
dc.description.references Hedenström, A. (2007). Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1490), 287-299. doi:10.1098/rstb.2007.2140 es_ES
dc.description.references MILÁ, B., WAYNE, R. K., & SMITH, T. B. (2008). ECOMORPHOLOGY OF MIGRATORY AND SEDENTARY POPULATIONS OF THE YELLOW-RUMPED WARBLER (DENDROICA CORONATA). The Condor, 110(2), 335-344. doi:10.1525/cond.2008.8396 es_ES
dc.description.references Keller, L. F., Grant, P. R., Grant, B. R., & Petren, K. (2001). Heritability of morphological traits in Darwin’s Finches: misidentified paternity and maternal effects. Heredity, 87(3), 325-336. doi:10.1046/j.1365-2540.2001.00900.x es_ES
dc.description.references Tarka, M., Åkesson, M., Beraldi, D., Hernández-Sánchez, J., Hasselquist, D., Bensch, S., & Hansson, B. (2010). A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proceedings of the Royal Society B: Biological Sciences, 277(1692), 2361-2369. doi:10.1098/rspb.2010.0033 es_ES
dc.description.references Svensson L (1992) Identification guide to European passerines, 4<sup>th</sup> edition. Lars Svensson, Stockholm. es_ES
dc.description.references De La Puente, J., & Seoane, J. (2001). The use of primary abrasion for ageing reed buntingsemberiza schoeniclus. Ringing & Migration, 20(3), 221-223. doi:10.1080/03078698.2001.9674249 es_ES
dc.description.references Jenni, L., & Winkler, R. (1989). The feather-length of small passerines: a measurement for wing-length in live birds and museum skins. Bird Study, 36(1), 1-15. doi:10.1080/00063658909476996 es_ES
dc.description.references Gosler, A. G., Greenwood, J. J. D., Baker, J. K., & Davidson, N. C. (1998). The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study, 45(1), 92-103. doi:10.1080/00063659809461082 es_ES
dc.description.references James Rohlf, F., & Marcus, L. F. (1993). A revolution morphometrics. Trends in Ecology & Evolution, 8(4), 129-132. doi:10.1016/0169-5347(93)90024-j es_ES
dc.description.references Marcus LF, Corti M, Loy A, Naylor GJP, Slice DE (eds) (1996) Advances in Morphometrics. NATO ASI Series A: Life Sciences. Plenum Press, New York. es_ES
dc.description.references Klingenberg CP (1996) Multivariate allometry. In: Marcus LF, Corti M, Loy A, Naylor G, Slice DE, editors. Advances in Morphometrics, Plenum Press, New York. 23–49. es_ES
dc.description.references Zelditch M, Swiderski D, Sheets H, Fink W (2004) Geometric Morphometrics for Biologists: A Primer. Elsevier Academic Press, London. es_ES
dc.description.references FOSTER, D. J., PODOS, J., & HENDRY, A. P. (2007). A geometric morphometric appraisal of beak shape in Darwin’s finches. Journal of Evolutionary Biology, 21(1), 263-275. doi:10.1111/j.1420-9101.2007.01449.x es_ES
dc.description.references Navarro, J., Kaliontzopoulou, A., & González-Solís, J. (2009). Sexual dimorphism in bill morphology and feeding ecology in Cory’s shearwater (Calonectris diomedea). Zoology, 112(2), 128-138. doi:10.1016/j.zool.2008.05.001 es_ES
dc.description.references Berns, C. M., & Adams, D. C. (2010). Bill Shape and Sexual Shape Dimorphism between two Species of Temperate Hummingbirds: Black-Chinned Hummingbird (Archilochusalexandri) and Ruby-Throated Hummingbird (A. colubris). The Auk, 127(3), 626-635. doi:10.1525/auk.2010.09213 es_ES
dc.description.references Rohlf FJ (2010) Morphometrics at SUNY Stony Brook. Available: http://life.bio.sunysb.edu/morph es_ES
dc.description.references Rohlf FJ (2010) tps Utility program. Version 1.46. Department of Ecology and Evolution, State University of New York at Stony Brook. es_ES
dc.description.references Kaliontzopoulou, A., Carretero, M. A., & Llorente, G. A. (2007). Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation inPodarcis lizards. Journal of Morphology, 268(2), 152-165. doi:10.1002/jmor.10494 es_ES
dc.description.references Rohlf FJ (2010) tpsDig. Version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook. es_ES
dc.description.references Rohlf FJ (2003) tpsSmall, version 1.20. Department of Ecology and Evolution, State University of New York at Stony Brook. es_ES
dc.description.references Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Systematic Zoology, 39(1), 40. doi:10.2307/2992207 es_ES
dc.description.references Rohlf, F. J. (1999). Shape Statistics: Procrustes Superimpositions and Tangent Spaces. Journal of Classification, 16(2), 197-223. doi:10.1007/s003579900054 es_ES
dc.description.references Rohlf FJ (2010) tpsRelw, relative warps analysis, version 1.49. Department of Ecology and Evolution, State University of New York at Stony Brook. es_ES
dc.description.references LLEONART, J., SALAT, J., & TORRES, G. J. (2000). Removing Allometric Effects of Body Size in Morphological Analysis. Journal of Theoretical Biology, 205(1), 85-93. doi:10.1006/jtbi.2000.2043 es_ES
dc.description.references IBM Corp. (2011) IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp. es_ES
dc.description.references BALDWIN, M. W., WINKLER, H., ORGAN, C. L., & HELM, B. (2010). Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). Journal of Evolutionary Biology, 23(5), 1050-1063. doi:10.1111/j.1420-9101.2010.01975.x es_ES
dc.description.references Förschler, M. I., & Bairlein, F. (2011). Morphological Shifts of the External Flight Apparatus across the Range of a Passerine (Northern Wheatear) with Diverging Migratory Behaviour. PLoS ONE, 6(4), e18732. doi:10.1371/journal.pone.0018732 es_ES
dc.description.references Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, et al.. (eds) (2002) The Migration Atlas: movements of the birds of Britain and Ireland. T. &amp; A.D. Poyser, London. es_ES
dc.description.references Tarka M (2012) Evolutionary dynamics of migration and breeding in wild birds: genetic architecture, sexual conflicts and evolutionary constrains. PhD dissertation, Lund, University, Sweden. 264 p. es_ES
dc.description.references Greenberg, R., & Olsen, B. (2010). Bill size and dimorphism in tidal-marsh sparrows: island-like processes in a continental habitat. Ecology, 91(8), 2428-2436. doi:10.1890/09-1136.1 es_ES
dc.description.references Cooper, I. A., Gilman, R. T., & Boughman, J. W. (2011). SEXUAL DIMORPHISM AND SPECIATION ON TWO ECOLOGICAL COINS: PATTERNS FROM NATURE AND THEORETICAL PREDICTIONS. Evolution, 65(9), 2553-2571. doi:10.1111/j.1558-5646.2011.01332.x es_ES
dc.description.references Greenberg, R., Cadena, V., Danner, R. M., & Tattersall, G. (2012). Heat Loss May Explain Bill Size Differences between Birds Occupying Different Habitats. PLoS ONE, 7(7), e40933. doi:10.1371/journal.pone.0040933 es_ES
dc.description.references Greenberg, R., Danner, R., Olsen, B., & Luther, D. (2012). High summer temperature explains bill size variation in salt marsh sparrows. Ecography, 35(2), 146-152. doi:10.1111/j.1600-0587.2011.07002.x es_ES
dc.description.references Greenberg, R., & Danner, R. M. (2012). THE INFLUENCE OF THE CALIFORNIA MARINE LAYER ON BILL SIZE IN A GENERALIST SONGBIRD. Evolution, 66(12), 3825-3835. doi:10.1111/j.1558-5646.2012.01726.x es_ES
dc.description.references Ballentine, B., & Greenberg, R. (2010). Common Garden Experiment Reveals Genetic Control of Phenotypic Divergence between Swamp Sparrow Subspecies That Lack Divergence in Neutral Genotypes. PLoS ONE, 5(4), e10229. doi:10.1371/journal.pone.0010229 es_ES


This item appears in the following Collection(s)

Show simple item record