Kou, S. G. (2002). A Jump-Diffusion Model for Option Pricing. Management Science, 48(8), 1086-1101. doi:10.1287/mnsc.48.8.1086.166
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1-2), 125-144. doi:10.1016/0304-405x(76)90022-2
Barndorff-Nielsen, O. E. (1997). Processes of normal inverse Gaussian type. Finance and Stochastics, 2(1), 41-68. doi:10.1007/s007800050032
[+]
Kou, S. G. (2002). A Jump-Diffusion Model for Option Pricing. Management Science, 48(8), 1086-1101. doi:10.1287/mnsc.48.8.1086.166
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1-2), 125-144. doi:10.1016/0304-405x(76)90022-2
Barndorff-Nielsen, O. E. (1997). Processes of normal inverse Gaussian type. Finance and Stochastics, 2(1), 41-68. doi:10.1007/s007800050032
Koponen, I. (1995). Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Physical Review E, 52(1), 1197-1199. doi:10.1103/physreve.52.1197
Madan, D. B., & Milne, F. (1991). Option Pricing With V. G. Martingale Components. Mathematical Finance, 1(4), 39-55. doi:10.1111/j.1467-9965.1991.tb00018.x
Carr, P., Geman, H., Madan, D. B., & Yor, M. (2002). The Fine Structure of Asset Returns: An Empirical Investigation. The Journal of Business, 75(2), 305-333. doi:10.1086/338705
BOYARCHENKO, S. I., & LEVENDORSKIǏ, S. Z. (2000). OPTION PRICING FOR TRUNCATED LÉVY PROCESSES. International Journal of Theoretical and Applied Finance, 03(03), 549-552. doi:10.1142/s0219024900000541
Matache *, A.-M., Nitsche, P.-A., & Schwab, C. (2005). Wavelet Galerkin pricing of American options on Lévy driven assets. Quantitative Finance, 5(4), 403-424. doi:10.1080/14697680500244478
Poirot, J., & Tankov, P. (2007). Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes. Asia-Pacific Financial Markets, 13(4), 327-344. doi:10.1007/s10690-007-9048-7
Fang, F., & Oosterlee, C. W. (2009). A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions. SIAM Journal on Scientific Computing, 31(2), 826-848. doi:10.1137/080718061
Benhamou, E., Gobet, E., & Miri, M. (2009). Smart expansion and fast calibration for jump diffusions. Finance and Stochastics, 13(4), 563-589. doi:10.1007/s00780-009-0102-3
Cont, R., & Voltchkova, E. (2005). A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models. SIAM Journal on Numerical Analysis, 43(4), 1596-1626. doi:10.1137/s0036142903436186
Wang, I., Wan, J., & Forsyth, P. (2007). Robust numerical valuation of European and American options under the CGMY process. The Journal of Computational Finance, 10(4), 31-69. doi:10.21314/jcf.2007.169
Casabán, M.-C., Company, R., Jódar, L., & Romero, J.-V. (2012). Double Discretization Difference Schemes for Partial Integrodifferential Option Pricing Jump Diffusion Models. Abstract and Applied Analysis, 2012, 1-20. doi:10.1155/2012/120358
Andersen, L., & Andreasen, J. (2000). Review of Derivatives Research, 4(3), 231-262. doi:10.1023/a:1011354913068
Almendral, A., & Oosterlee, C. W. (2007). Accurate Evaluation of European and American Options Under the CGMY Process. SIAM Journal on Scientific Computing, 29(1), 93-117. doi:10.1137/050637613
Sachs, E. W., & Strauss, A. K. (2008). Efficient solution of a partial integro-differential equation in finance. Applied Numerical Mathematics, 58(11), 1687-1703. doi:10.1016/j.apnum.2007.11.002
Salmi, S., & Toivanen, J. (2011). An iterative method for pricing American options under jump-diffusion models. Applied Numerical Mathematics, 61(7), 821-831. doi:10.1016/j.apnum.2011.02.002
Toivanen, J. (2008). Numerical Valuation of European and American Options under Kou’s Jump-Diffusion Model. SIAM Journal on Scientific Computing, 30(4), 1949-1970. doi:10.1137/060674697
Almendral, A., & Oosterlee, C. W. (2005). Numerical valuation of options with jumps in the underlying. Applied Numerical Mathematics, 53(1), 1-18. doi:10.1016/j.apnum.2004.08.037
Lee, J., & Lee, Y. (2013). Tridiagonal implicit method to evaluate European and American options under infinite activity Lévy models. Journal of Computational and Applied Mathematics, 237(1), 234-243. doi:10.1016/j.cam.2012.07.028
Madan, D. B., & Seneta, E. (1990). The Variance Gamma (V.G.) Model for Share Market Returns. The Journal of Business, 63(4), 511. doi:10.1086/296519
Milgram, M. S. (1985). The generalized integro-exponential function. Mathematics of Computation, 44(170), 443-443. doi:10.1090/s0025-5718-1985-0777276-4
Matache, A.-M., von Petersdorff, T., & Schwab, C. (2004). Fast deterministic pricing of options on Lévy driven assets. ESAIM: Mathematical Modelling and Numerical Analysis, 38(1), 37-71. doi:10.1051/m2an:2004003
Kangro, R., & Nicolaides, R. (2000). Far Field Boundary Conditions for Black--Scholes Equations. SIAM Journal on Numerical Analysis, 38(4), 1357-1368. doi:10.1137/s0036142999355921
Madan, D. B., Carr, P. P., & Chang, E. C. (1998). The Variance Gamma Process and Option Pricing. Review of Finance, 2(1), 79-105. doi:10.1023/a:1009703431535
[-]