- -

On potential cognitive abilities in the machine kingdom

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On potential cognitive abilities in the machine kingdom

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Orallo, José es_ES
dc.contributor.author Dowe, David L. es_ES
dc.date.accessioned 2014-09-22T17:48:05Z
dc.date.available 2014-09-22T17:48:05Z
dc.date.issued 2013-05
dc.identifier.issn 0924-6495
dc.identifier.uri http://hdl.handle.net/10251/39847
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s11023-012-9299-6 es_ES
dc.description.abstract Animals, including humans, are usually judged on what they could become, rather than what they are. Many physical and cognitive abilities in the ‘animal kingdom’ are only acquired (to a given degree) when the subject reaches a certain stage of development, which can be accelerated or spoilt depending on how the environment, training or education is. The term ‘potential ability’ usually refers to how quick and likely the process of attaining the ability is. In principle, things should not be different for the ‘machine kingdom’. While machines can be characterised by a set of cognitive abilities, and measuring them is already a big challenge, known as ‘universal psychometrics’, a more informative, and yet more challenging, goal would be to also determine the potential cognitive abilities of a machine. In this paper we investigate the notion of potential cognitive ability for machines, focussing especially on universality and intelligence. We consider several machine characterisations (non-interactive and interactive) and give definitions for each case, considering permanent and temporal potentials. From these definitions, we analyse the relation between some potential abilities, we bring out the dependency on the environment distribution and we suggest some ideas about how potential abilities can be measured. Finally, we also analyse the potential of environments at different levels and briefly discuss whether machines should be designed to be intelligent or potentially intelligent. es_ES
dc.description.sponsorship We thank the anonymous reviewers for their comments, which have helped to significantly improve this paper. This work was supported by the MEC-MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST - European Cooperation in the field of Scientific and Technical Research IC0801 AT. Finally, we thank three pioneers ahead of their time(s). We thank Ray Solomonoff (1926-2009) and Chris Wallace (1933-2004) for all that they taught us, directly and indirectly. And, in his centenary year, we thank Alan Turing (1912-1954), with whom it perhaps all began. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Minds and Machines es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cognitive abilities es_ES
dc.subject Machine intelligence measurement es_ES
dc.subject Turing machines es_ES
dc.subject Universality probability es_ES
dc.subject Potential intelligence es_ES
dc.subject Psychometrics es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title On potential cognitive abilities in the machine kingdom es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11023-012-9299-6
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//IC0801/EU/Agreement Technologies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-21062-C02-02/ES/SWEETLOGICS-UPV/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Hernández-Orallo, J.; Dowe, DL. (2013). On potential cognitive abilities in the machine kingdom. Minds and Machines. 23(2):179-210. https://doi.org/10.1007/s11023-012-9299-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs11023-012-9299-6 es_ES
dc.description.upvformatpinicio 179 es_ES
dc.description.upvformatpfin 210 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 263077
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Cooperation in Science and Technology
dc.description.references Amari, S., Fujita, N., Shinomoto, S. (1992). Four types of learning curves. Neural Computation 4(4), 605–618. es_ES
dc.description.references Aristotle (Translation, Introduction, and Commentary by Ross, W.D.) (1924). Aristotle’s Metaphysics. Oxford: Clarendon Press. es_ES
dc.description.references Barmpalias, G. & Dowe, D. L. (2012). Universality probability of a prefix-free machine. Philosophical transactions of the Royal Society A [Mathematical, Physical and Engineering Sciences] (Phil Trans A), Theme Issue ‘The foundations of computation, physics and mentality: The Turing legacy’ compiled and edited by Barry Cooper and Samson Abramsky, 370, pp 3488–3511. es_ES
dc.description.references Chaitin, G. J. (1966). On the length of programs for computing finite sequences. Journal of the Association for Computing Machinery, 13, 547–569. es_ES
dc.description.references Chaitin, G. J. (1975). A theory of program size formally identical to information theory. Journal of the ACM (JACM), 22(3), 329–340. es_ES
dc.description.references Dowe, D. L. (2008, September). Foreword re C. S. Wallace. Computer Journal, 51(5):523–560, Christopher Stewart WALLACE (1933–2004) memorial special issue. es_ES
dc.description.references Dowe, D. L. (2011). MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: P. S. Bandyopadhyay, M. R. Forster (Eds), Handbook of the philosophy of science—Volume 7: Philosophy of statistics (pp. 901–982). Amsterdam: Elsevier. es_ES
dc.description.references Dowe, D. L. & Hajek, A. R. (1997a). A computational extension to the turing test. Technical report #97/322, Dept Computer Science, Monash University, Melbourne, Australia, 9 pp, http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-abs.html . es_ES
dc.description.references Dowe, D. L. & Hajek, A. R. (1997b, September). A computational extension to the Turing Test. in Proceedings of the 4th conference of the Australasian Cognitive Science Society, University of Newcastle, NSW, Australia, 9 pp. es_ES
dc.description.references Dowe, D. L. & Hajek, A. R. (1998, February). A non-behavioural, computational extension to the Turing Test. In: International conference on computational intelligence and multimedia applications (ICCIMA’98), Gippsland, Australia, pp 101–106. es_ES
dc.description.references Dowe, D. L., Hernández-Orallo, J. (2012). IQ tests are not for machines, yet. Intelligence, 40(2), 77–81. es_ES
dc.description.references Gallistel, C. R., Fairhurst, S., & Balsam, P. (2004). The learning curve: Implications of a quantitative analysis. In Proceedings of the National Academy of Sciences of the United States of America, 101(36), 13124–13131. es_ES
dc.description.references Gardner, M. (1970). Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(4), 120–123. es_ES
dc.description.references Goertzel, B. & Bugaj, S. V. (2009). AGI preschool: A framework for evaluating early-stage human-like AGIs. In Proceedings of the second international conference on artificial general intelligence (AGI-09), pp 31–36. es_ES
dc.description.references Hernández-Orallo, J. (2000a). Beyond the Turing Test. Journal of Logic, Language & Information, 9(4), 447–466. es_ES
dc.description.references Hernández-Orallo, J. (2000b). On the computational measurement of intelligence factors. In A. Meystel (Ed), Performance metrics for intelligent systems workshop (pp 1–8). Gaithersburg, MD: National Institute of Standards and Technology. es_ES
dc.description.references Hernández-Orallo, J. (2010). On evaluating agent performance in a fixed period of time. In M. Hutter et al. (Eds.), Proceedings of 3rd international conference on artificial general intelligence (pp. 25–30). New York: Atlantis Press. es_ES
dc.description.references Hernández-Orallo, J., & Dowe, D. L. (2010). Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence, 174(18), 1508–1539. es_ES
dc.description.references Hernández-Orallo, J. & Dowe, D. L. (2011, April). Mammals, machines and mind games. Who’s the smartest?. The conversation, http://theconversation.edu.au/mammals-machines-and-mind-games-whos-the-smartest-566 . es_ES
dc.description.references Hernández-Orallo J., Dowe D. L., España-Cubillo S., Hernández-Lloreda M. V., & Insa-Cabrera J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. In: J. Schmidhuber, K. R. Thórisson, & M. Looks (Eds.), Artificial general intelligence 2011, volume 6830, LNAI series, pp. 82–91. New York: Springer. es_ES
dc.description.references Hernández-Orallo, J., Dowe, D. L., & Hernández-Lloreda, M. V. (2012a, March). Measuring cognitive abilities of machines, humans and non-human animals in a unified way: towards universal psychometrics. Technical report 2012/267, Faculty of Information Technology, Clayton School of I.T., Monash University, Australia. es_ES
dc.description.references Hernández-Orallo, J., Insa, J., Dowe, D. L., & Hibbard, B. (2012b). Turing tests with Turing machines. In A. Voronkov (Ed.), The Alan Turing centenary conference, Turing-100, Manchester, volume 10 of EPiC Series, pp 140–156. es_ES
dc.description.references Hernández-Orallo, J., & Minaya-Collado, N. (1998). A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In Proceedings of the international symposium of engineering of intelligent systems (EIS’98) (pp 146–163). Switzerland: ICSC Press. es_ES
dc.description.references Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science, 317(5843), 1360–1366. es_ES
dc.description.references Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The structure of individual differences in the cognitive abilities of children and chimpanzees. Psychological Science, 21(1), 102–110. es_ES
dc.description.references Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of educational psychology, 57(5), 253. es_ES
dc.description.references Hutter, M. (2005). Universal artificial intelligence: Sequential decisions based on algorithmic probability. New York: Springer. es_ES
dc.description.references Insa-Cabrera, J., Dowe, D. L., España, S., Hernández-Lloreda, M. V., & Hernández-Orallo, J. (2011a). Comparing humans and AI agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp 122–132. Springer, New York. es_ES
dc.description.references Insa-Cabrera, J., Dowe, D. L., & Hernández-Orallo, J. (2011b). Evaluating a reinforcement learning algorithm with a general intelligence test. In CAEPIA—Lecture Notes in Artificial Intelligence (LNAI), volume 7023, pages 1–11. Springer, New York. es_ES
dc.description.references Kearns, M. & Singh, S. (2002). Near-optimal reinforcement learning in polynomial time. Machine Learning, 49(2), 209–232. es_ES
dc.description.references Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1, 4–7. es_ES
dc.description.references Legg, S. (2008, June). Machine super intelligence. Department of Informatics, University of Lugano. es_ES
dc.description.references Legg, S. & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444. es_ES
dc.description.references Legg, S., & Veness, J. (2012). An approximation of the universal intelligence measure. In Proceedings of Solomonoff 85th memorial conference. New York: Springer. es_ES
dc.description.references Levin, L. A. (1973). Universal sequential search problems. Problems of Information Transmission, 9(3), 265–266. es_ES
dc.description.references Li, M., Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd ed). New York: Springer. es_ES
dc.description.references Little, V. L., & Bailey, K. G. (1972). Potential intelligence or intelligence test potential? A question of empirical validity. Journal of Consulting and Clinical Psychology, 39(1), 168. es_ES
dc.description.references Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In Proceedings of the national conference on artificial intelligence, AAAI (pp. 486–502). New Jersey: Wiley. es_ES
dc.description.references Mahrer, A. R. (1958). Potential intelligence: A learning theory approach to description and clinical implication. The Journal of General Psychology, 59(1), 59–71. es_ES
dc.description.references Oppy, G., & Dowe, D. L. (2011). The Turing Test. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford University. http://plato.stanford.edu/entries/turing-test/ . es_ES
dc.description.references Orseau, L. & Ring, M. (2011). Self-modification and mortality in artificial agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pages 1–10. Springer, New York. es_ES
dc.description.references Ring, M. & Orseau, L. (2011). Delusion, survival, and intelligent agents. In AGI: 4th conference on artificial general intelligence—Lecture Notes in Artificial Intelligence (LNAI), volume 6830, pp. 11–20. Springer, New York. es_ES
dc.description.references Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., et al. (2007). Checkers is solved. Science, 317(5844), 1518. es_ES
dc.description.references Solomonoff, R. J. (1962). Training sequences for mechanized induction. In M. Yovits, G. Jacobi, & G. Goldsteins (Eds.), Self-Organizing Systems, 7, 425–434. es_ES
dc.description.references Solomonoff, R. J. (1964). A formal theory of inductive inference. Information and Control, 7(1–22), 224–254. es_ES
dc.description.references Solomonoff, R. J. (1967). Inductive inference research: Status, Spring 1967. RTB 154, Rockford Research, Inc., 140 1/2 Mt. Auburn St., Cambridge, Mass. 02138, July 1967. es_ES
dc.description.references Solomonoff, R. J. (1978). Complexity-based induction systems: comparisons and convergence theorems. IEEE Transactions on Information Theory, 24(4), 422–432. es_ES
dc.description.references Solomonoff, R. J. (1984). Perfect training sequences and the costs of corruption—A progress report on induction inference research. Oxbridge research. es_ES
dc.description.references Solomonoff, R. J. (1985). The time scale of artificial intelligence: Reflections on social effects. Human Systems Management, 5, 149–153. es_ES
dc.description.references Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: The MIT press. es_ES
dc.description.references Thorp, T. R., & Mahrer, A. R. (1959). Predicting potential intelligence. Journal of Clinical Psychology, 15(3), 286–288. es_ES
dc.description.references Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460. es_ES
dc.description.references Veness, J., Ng, K. S., Hutter, M., & Silver, D. (2011). A Monte Carlo AIXI approximation. Journal of Artificial Intelligence Research, JAIR, 40, 95–142. es_ES
dc.description.references Wallace, C. S. (2005). Statistical and inductive inference by minimum message length. New York: Springer. es_ES
dc.description.references Wallace, C. S., & Boulton, D. M. (1968). An information measure for classification. Computer Journal, 11, 185–194. es_ES
dc.description.references Wallace, C. S., & Dowe, D. L. (1999a). Minimum message length and Kolmogorov complexity. Computer Journal 42(4), 270–283. es_ES
dc.description.references Wallace, C. S., & Dowe, D. L. (1999b). Refinements of MDL and MML coding. Computer Journal, 42(4), 330–337. es_ES
dc.description.references Woergoetter, F., & Porr, B. (2008). Reinforcement learning. Scholarpedia, 3(3), 1448. es_ES
dc.description.references Zvonkin, A. K., & Levin, L. A. (1970). The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys, 25, 83–124. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem