- -

Translation rescoring through recurrent neural network language models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Translation rescoring through recurrent neural network language models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Casacuberta Nolla, Francisco es_ES
dc.contributor.advisor Ortiz Martínez, Daniel es_ES
dc.contributor.author Peris Abril, Álvaro es_ES
dc.date.accessioned 2014-09-23T14:06:05Z
dc.date.available 2014-09-23T14:06:05Z
dc.date.created 2014-09-14
dc.date.issued 2014-09-23T14:06:05Z
dc.identifier.uri http://hdl.handle.net/10251/39898
dc.description.abstract This work is framed into the Statistical Machine Translation field, more specifically into the language modeling challenge. In this area, have classically predominated the n-gram approach, but, in the latest years, different approaches have arisen in order to tackle this problem. One of this approaches is the use of artificial recurrent neural networks, which are supposed to outperform the n-gram language models. The aim of this work is to test empirically these new language models. For doing that, the translation rescoring of three tasks of different complexity has been performed: in first place, the translation problem has been solved by means of the classic n-gram language models. Next, the different translation hypotheses have been rescored through the language models based on neural networks and the results have been compared. This comparison shows that the translations produced by the neural network language models have a better quality in all the experiments: the perplexity of the language models has been lowered and the BLEU score of the translations outputted by the system has yielded higher values with the neural network language model than with the classical n-gram language model. es_ES
dc.format.extent 71 es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Recurrent neural networks es_ES
dc.subject Statistical machine translation es_ES
dc.subject n-gram language model es_ES
dc.subject BLEU es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.other Ingeniería Informática-Enginyeria Informàtica es_ES
dc.title Translation rescoring through recurrent neural network language models es_ES
dc.type Proyecto/Trabajo fin de carrera/grado es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Peris Abril, Á. (2014). Translation rescoring through recurrent neural network language models. http://hdl.handle.net/10251/39898. es_ES
dc.description.accrualMethod Archivo delegado es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem