- -

A Jacobi-Davidson type method with a correction equation tailored for integral operators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Jacobi-Davidson type method with a correction equation tailored for integral operators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vasconcelos, Paulo B. es_ES
dc.contributor.author d'Almeida, Filomena D. es_ES
dc.contributor.author Román Moltó, José Enrique es_ES
dc.date.accessioned 2014-09-24T18:06:04Z
dc.date.available 2014-09-24T18:06:04Z
dc.date.issued 2013-09
dc.identifier.issn 1017-1398
dc.identifier.uri http://hdl.handle.net/10251/40163
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s11075-012-9656-9 es_ES
dc.description.abstract We propose two iterative numerical methods for eigenvalue computations of large dimensional problems arising from finite approximations of integral operators, and describe their parallel implementation. A matrix representation of the problem on a space of moderate dimension, defined from an infinite dimensional one, is computed along with its eigenpairs. These are taken as initial approximations and iteratively refined, by means of a correction equation based on the reduced resolvent operator and performed on the moderate size space, to enhance their quality. Each refinement step requires the prolongation of the correction equation solution back to a higher dimensional space, defined from the infinite dimensional one. This approach is particularly adapted for the computation of eigenpair approximations of integral operators, where prolongation and restriction matrices can be easily built making a bridge between coarser and finer discretizations. We propose two methods that apply a Jacobi–Davidson like correction: Multipower Defect-Correction (MPDC), which uses a single-vector scheme, if the eigenvalues to refine are simple, and Rayleigh–Ritz Defect-Correction (RRDC), which is based on a projection onto an expanding subspace. Their main advantage lies in the fact that the correction equation is performed on a smaller space while for general solvers it is done on the higher dimensional one. We discuss implementation and parallelization details, using the PETSc and SLEPc packages. Also, numerical results on an astrophysics application, whose mathematical model involves a weakly singular integral operator, are presented. es_ES
dc.description.sponsorship This work was partially supported by European Regional Development Fund through COMPETE, FCT-Fundacao para a Ciencia e a Tecnologia through CMUP-Centro de Matematica da Universidade do Porto and Spanish Ministerio de Ciencia e Innovacion under projects TIN2009-07519 and AIC10-D-000600. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Numerical Algorithms es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Integral operators es_ES
dc.subject Krylov subspace methods es_ES
dc.subject Parallel computing es_ES
dc.subject Eigenvalue problems es_ES
dc.subject Jacobi–Davidson approximation es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title A Jacobi-Davidson type method with a correction equation tailored for integral operators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11075-012-9656-9
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AIC10-D-000600/ES/DE PLATAFORMAS PARALELAS TRADICIONALES A ENTORNOS DE COMPUTACIÓN GPU Y CLOUD - UN CASO DE ESTUDIO DE COMPUTACIÓN ESPECTRAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-07519/ES/Metodos Avanzados Y Tecnicas Computacionales Novedosas Para La Resolucion Numerica De Problemas De Valores Propios De Gran Dimension/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Vasconcelos, PB.; D'almeida, FD.; Román Moltó, JE. (2013). A Jacobi-Davidson type method with a correction equation tailored for integral operators. Numerical Algorithms. 64(1):85-103. doi:10.1007/s11075-012-9656-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs11075-012-9656-9 es_ES
dc.description.upvformatpinicio 85 es_ES
dc.description.upvformatpfin 103 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 64 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 246556
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Absil, P.A., Mahony, R., Sepulchre, R., Dooren, P.V.: A Grassmann–Rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 44(1), 57–73 (2002) es_ES
dc.description.references Ahues, M., Largillier, A., Limaye, B.V.: Spectral Computations with Bounded Operators. Chapman and Hall, Boca Raton (2001) es_ES
dc.description.references Ahues, M., d’Almeida, F.D., Largillier, A., Titaud, O., Vasconcelos, P.: An L 1 refined projection approximate solution of the radiation transfer equation in stellar atmospheres. J. Comput. Appl. Math. 140(1–2), 13–26 (2002) es_ES
dc.description.references Ahues, M., d’Almeida, F.D., Largillier, A., Vasconcelos, P.B.: Defect correction for spectral computations for a singular integral operator. Commun. Pure Appl. Anal. 5(2), 241–250 (2006) es_ES
dc.description.references Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (2000) es_ES
dc.description.references Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010) es_ES
dc.description.references Chatelin, F.: Spectral Approximation of Linear Operators. SIAM, Philadelphia (2011) es_ES
dc.description.references d’Almeida, F.D., Vasconcelos, P.B.: Convergence of multipower defect correction for spectral computations of integral operators. Appl. Math. Comput. 219(4), 1601–1606 (2012) es_ES
dc.description.references Falgout, R.D., Yang, U.M.: Hypre: A library of high performance preconditioners. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) Computational Science - ICCS 2002, International Conference, Amsterdam, The Netherlands, April 21–24, 2002. Proceedings, Part III, Lecture Notes in Computer Science, vol. 2331, pp. 632–641. Springer (2002) es_ES
dc.description.references Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002) es_ES
dc.description.references Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005) es_ES
dc.description.references Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: SLEPc Users Manual. Tech. Rep. DSIC-II/24/02 - Revision 3.1, D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2010) es_ES
dc.description.references Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003) es_ES
dc.description.references Simoncini, V., Eldén, L.: Inexact Rayleigh quotient-type methods for eigenvalue computations. BIT 42(1), 159–182 (2002) es_ES
dc.description.references Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42(2), 267–293 (2000) es_ES
dc.description.references Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992) es_ES
dc.description.references Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem