Mostrar el registro sencillo del ítem
dc.contributor.author | Vasconcelos, Paulo B. | es_ES |
dc.contributor.author | d'Almeida, Filomena D. | es_ES |
dc.contributor.author | Román Moltó, José Enrique | es_ES |
dc.date.accessioned | 2014-09-24T18:06:04Z | |
dc.date.available | 2014-09-24T18:06:04Z | |
dc.date.issued | 2013-09 | |
dc.identifier.issn | 1017-1398 | |
dc.identifier.uri | http://hdl.handle.net/10251/40163 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/s11075-012-9656-9 | es_ES |
dc.description.abstract | We propose two iterative numerical methods for eigenvalue computations of large dimensional problems arising from finite approximations of integral operators, and describe their parallel implementation. A matrix representation of the problem on a space of moderate dimension, defined from an infinite dimensional one, is computed along with its eigenpairs. These are taken as initial approximations and iteratively refined, by means of a correction equation based on the reduced resolvent operator and performed on the moderate size space, to enhance their quality. Each refinement step requires the prolongation of the correction equation solution back to a higher dimensional space, defined from the infinite dimensional one. This approach is particularly adapted for the computation of eigenpair approximations of integral operators, where prolongation and restriction matrices can be easily built making a bridge between coarser and finer discretizations. We propose two methods that apply a Jacobi–Davidson like correction: Multipower Defect-Correction (MPDC), which uses a single-vector scheme, if the eigenvalues to refine are simple, and Rayleigh–Ritz Defect-Correction (RRDC), which is based on a projection onto an expanding subspace. Their main advantage lies in the fact that the correction equation is performed on a smaller space while for general solvers it is done on the higher dimensional one. We discuss implementation and parallelization details, using the PETSc and SLEPc packages. Also, numerical results on an astrophysics application, whose mathematical model involves a weakly singular integral operator, are presented. | es_ES |
dc.description.sponsorship | This work was partially supported by European Regional Development Fund through COMPETE, FCT-Fundacao para a Ciencia e a Tecnologia through CMUP-Centro de Matematica da Universidade do Porto and Spanish Ministerio de Ciencia e Innovacion under projects TIN2009-07519 and AIC10-D-000600. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Numerical Algorithms | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Integral operators | es_ES |
dc.subject | Krylov subspace methods | es_ES |
dc.subject | Parallel computing | es_ES |
dc.subject | Eigenvalue problems | es_ES |
dc.subject | Jacobi–Davidson approximation | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | A Jacobi-Davidson type method with a correction equation tailored for integral operators | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11075-012-9656-9 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AIC10-D-000600/ES/DE PLATAFORMAS PARALELAS TRADICIONALES A ENTORNOS DE COMPUTACIÓN GPU Y CLOUD - UN CASO DE ESTUDIO DE COMPUTACIÓN ESPECTRAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2009-07519/ES/Metodos Avanzados Y Tecnicas Computacionales Novedosas Para La Resolucion Numerica De Problemas De Valores Propios De Gran Dimension/ / | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Vasconcelos, PB.; D'almeida, FD.; Román Moltó, JE. (2013). A Jacobi-Davidson type method with a correction equation tailored for integral operators. Numerical Algorithms. 64(1):85-103. doi:10.1007/s11075-012-9656-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs11075-012-9656-9 | es_ES |
dc.description.upvformatpinicio | 85 | es_ES |
dc.description.upvformatpfin | 103 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 64 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 246556 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | |
dc.description.references | Absil, P.A., Mahony, R., Sepulchre, R., Dooren, P.V.: A Grassmann–Rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 44(1), 57–73 (2002) | es_ES |
dc.description.references | Ahues, M., Largillier, A., Limaye, B.V.: Spectral Computations with Bounded Operators. Chapman and Hall, Boca Raton (2001) | es_ES |
dc.description.references | Ahues, M., d’Almeida, F.D., Largillier, A., Titaud, O., Vasconcelos, P.: An L 1 refined projection approximate solution of the radiation transfer equation in stellar atmospheres. J. Comput. Appl. Math. 140(1–2), 13–26 (2002) | es_ES |
dc.description.references | Ahues, M., d’Almeida, F.D., Largillier, A., Vasconcelos, P.B.: Defect correction for spectral computations for a singular integral operator. Commun. Pure Appl. Anal. 5(2), 241–250 (2006) | es_ES |
dc.description.references | Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.): Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Society for Industrial and Applied Mathematics, Philadelphia (2000) | es_ES |
dc.description.references | Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010) | es_ES |
dc.description.references | Chatelin, F.: Spectral Approximation of Linear Operators. SIAM, Philadelphia (2011) | es_ES |
dc.description.references | d’Almeida, F.D., Vasconcelos, P.B.: Convergence of multipower defect correction for spectral computations of integral operators. Appl. Math. Comput. 219(4), 1601–1606 (2012) | es_ES |
dc.description.references | Falgout, R.D., Yang, U.M.: Hypre: A library of high performance preconditioners. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) Computational Science - ICCS 2002, International Conference, Amsterdam, The Netherlands, April 21–24, 2002. Proceedings, Part III, Lecture Notes in Computer Science, vol. 2331, pp. 632–641. Springer (2002) | es_ES |
dc.description.references | Henson, V.E., Yang, U.M.: BoomerAMG: A parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41(1), 155–177 (2002) | es_ES |
dc.description.references | Hernandez, V., Roman, J.E., Vidal, V.: SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351–362 (2005) | es_ES |
dc.description.references | Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: SLEPc Users Manual. Tech. Rep. DSIC-II/24/02 - Revision 3.1, D. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia (2010) | es_ES |
dc.description.references | Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003) | es_ES |
dc.description.references | Simoncini, V., Eldén, L.: Inexact Rayleigh quotient-type methods for eigenvalue computations. BIT 42(1), 159–182 (2002) | es_ES |
dc.description.references | Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Rev. 42(2), 267–293 (2000) | es_ES |
dc.description.references | Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992) | es_ES |
dc.description.references | Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001) | es_ES |