- -

Selective and Sensitive Chromogenic Detection of Cyanide and HCN in Solution and in Gas Phase

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective and Sensitive Chromogenic Detection of Cyanide and HCN in Solution and in Gas Phase

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gotor Candel, Raul Jesús es_ES
dc.contributor.author Costero Nieto, Ana María es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Parra Álvarez, Margarita es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Gaviña Costero, Pablo es_ES
dc.date.accessioned 2014-09-26T12:12:50Z
dc.date.available 2014-09-26T12:12:50Z
dc.date.issued 2013-06-25
dc.identifier.issn 1359-7345
dc.identifier.uri http://hdl.handle.net/10251/40299
dc.description.abstract Two triphenylmethane based chemodosimeters for selective and chromogenic sensing of cyanide anions in aqueous environments and of hydrogen cyanide in gas phase were prepared and studied. es_ES
dc.description.sponsorship We thank the Spanish Government (project MAT2012-38429-C04-02) for its financial support. R.G. acknowledges Spanish MICINN for a predoctoral fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Photophysics es_ES
dc.subject Chemodosimeter es_ES
dc.subject Photochemistry es_ES
dc.subject Sensor media es_ES
dc.subject Anion recognition es_ES
dc.subject Sodium Cyanide es_ES
dc.subject Aqueous solutions es_ES
dc.subject Spiropyran conjugate es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Selective and Sensitive Chromogenic Detection of Cyanide and HCN in Solution and in Gas Phase es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c3cc80006g
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-02/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE EXPLOSIVOS Y GASES PELIGROSOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gotor Candel, RJ.; Costero Nieto, AM.; Gil Grau, S.; Parra Álvarez, M.; Martínez Mañez, R.; Sancenón Galarza, F.; Gaviña Costero, P. (2013). Selective and Sensitive Chromogenic Detection of Cyanide and HCN in Solution and in Gas Phase. Chemical Communications. 49(50):5669-5671. https://doi.org/10.1039/c3cc80006g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c3cc80006g es_ES
dc.description.upvformatpinicio 5669 es_ES
dc.description.upvformatpfin 5671 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 49 es_ES
dc.description.issue 50 es_ES
dc.relation.senia 258685
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Yang, Y. C., Baker, J. A., & Ward, J. R. (1992). Decontamination of chemical warfare agents. Chemical Reviews, 92(8), 1729-1743. doi:10.1021/cr00016a003 es_ES
dc.description.references Keim, M. E. (2006). Terrorism Involving Cyanide: The Prospect of Improving Preparedness in the Prehospital Setting. Prehospital and Disaster Medicine, 21(S2), s56-s60. doi:10.1017/s1049023x00015910 es_ES
dc.description.references Shan, D., Mousty, C., & Cosnier, S. (2004). Subnanomolar Cyanide Detection at Polyphenol Oxidase/Clay Biosensors. Analytical Chemistry, 76(1), 178-183. doi:10.1021/ac034713m es_ES
dc.description.references Lindsay, A. E., & O’Hare, D. (2006). The development of an electrochemical sensor for the determination of cyanide in physiological solutions. Analytica Chimica Acta, 558(1-2), 158-163. doi:10.1016/j.aca.2005.11.036 es_ES
dc.description.references Shiraishi, Y., Sumiya, S., Manabe, K., & Hirai, T. (2011). Thermoresponsive Copolymer Containing a Coumarin–Spiropyran Conjugate: Reusable Fluorescent Sensor for Cyanide Anion Detection in Water. ACS Applied Materials & Interfaces, 3(12), 4649-4656. doi:10.1021/am201069n es_ES
dc.description.references Vallejos, S., Estévez, P., García, F. C., Serna, F., de la Peña, J. L., & García, J. M. (2010). Putting to work organic sensing molecules in aqueous media: fluorene derivative-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chemical Communications, 46(42), 7951. doi:10.1039/c0cc02143a es_ES
dc.description.references Kim, H. J., Ko, K. C., Lee, J. H., Lee, J. Y., & Kim, J. S. (2011). KCN sensor: unique chromogenic and ‘turn-on’ fluorescent chemodosimeter: rapid response and high selectivity. Chemical Communications, 47(10), 2886. doi:10.1039/c0cc05018k es_ES
dc.description.references Jin, W. J., Fernández-Argüelles, M. T., Costa-Fernández, J. M., Pereiro, R., & Sanz-Medel, A. (2005). Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun., (7), 883-885. doi:10.1039/b414858d es_ES
dc.description.references Touceda-Varela, A., Stevenson, E. I., Galve-Gasión, J. A., Dryden, D. T. F., & Mareque-Rivas, J. C. (2008). Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. Chemical Communications, (17), 1998. doi:10.1039/b716194h es_ES
dc.description.references Kim, Y.-H., & Hong, J.-I. (2002). Ion pair recognition by Zn–porphyrin/crown ether conjugates: visible sensing of sodium cyanideElectronic supplementary information (ESI) available: selected spectral data for 3a and 3b, detailed dimerization phenomena, and Fig. S1–8. See http://www.rsc.org/suppdata/cc/b1/b109596j/. Chemical Communications, (5), 512-513. doi:10.1039/b109596j es_ES
dc.description.references Liu, H., Shao, X.-B., Jia, M.-X., Jiang, X.-K., Li, Z.-T., & Chen, G.-J. (2005). Selective recognition of sodium cyanide and potassium cyanide by diaza-crown ether-capped Zn-porphyrin receptors in polar solvents. Tetrahedron, 61(34), 8095-8100. doi:10.1016/j.tet.2005.06.058 es_ES
dc.description.references Chow, C.-F., Lam, M. H. W., & Wong, W.-Y. (2004). A Heterobimetallic Ruthenium(II)−Copper(II) Donor−Acceptor Complex as a Chemodosimetric Ensemble for Selective Cyanide Detection. Inorganic Chemistry, 43(26), 8387-8393. doi:10.1021/ic0492587 es_ES
dc.description.references Zelder, F. H. (2008). Specific Colorimetric Detection of Cyanide Triggered by a Conformational Switch in Vitamin B12. Inorganic Chemistry, 47(4), 1264-1266. doi:10.1021/ic702368b es_ES
dc.description.references Zeng, Q., Cai, P., Li, Z., Qin, J., & Tang, B. Z. (2008). An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide. Chemical Communications, (9), 1094. doi:10.1039/b717764j es_ES
dc.description.references Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368j es_ES
dc.description.references Isaad, J., & El Achari, A. (2011). Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials. Tetrahedron, 67(26), 4939-4947. doi:10.1016/j.tet.2011.04.061 es_ES
dc.description.references Lin, Y.-D., Peng, Y.-S., Su, W., Tu, C.-H., Sun, C.-H., & Chow, T. J. (2012). A highly selective colorimetric and turn-on fluorescent probe for cyanide anion. Tetrahedron, 68(11), 2523-2526. doi:10.1016/j.tet.2012.01.026 es_ES
dc.description.references Guliyev, R., Ozturk, S., Sahin, E., & Akkaya, E. U. (2012). Expanded Bodipy Dyes: Anion Sensing Using a Bodipy Analog with an Additional Difluoroboron Bridge. Organic Letters, 14(6), 1528-1531. doi:10.1021/ol300260q es_ES
dc.description.references Dong, M., Peng, Y., Dong, Y.-M., Tang, N., & Wang, Y.-W. (2011). A Selective, Colorimetric, and Fluorescent Chemodosimeter for Relay Recognition of Fluoride and Cyanide Anions Based on 1,1′-Binaphthyl Scaffold. Organic Letters, 14(1), 130-133. doi:10.1021/ol202926e es_ES
dc.description.references Sumiya, S., Doi, T., Shiraishi, Y., & Hirai, T. (2012). Colorimetric sensing of cyanide anion in aqueous media with a fluorescein–spiropyran conjugate. Tetrahedron, 68(2), 690-696. doi:10.1016/j.tet.2011.10.097 es_ES
dc.description.references Feng, L., Musto, C. J., Kemling, J. W., Lim, S. H., Zhong, W., & Suslick, K. S. (2010). Colorimetric Sensor Array for Determination and Identification of Toxic Industrial Chemicals. Analytical Chemistry, 82(22), 9433-9440. doi:10.1021/ac1020886 es_ES
dc.description.references Yang, M., He, J., Hu, X., Yan, C., Cheng, Z., Zhao, Y., & Zuo, G. (2011). Copper oxide nanoparticle sensors for hydrogen cyanide detection: Unprecedented selectivity and sensitivity. Sensors and Actuators B: Chemical, 155(2), 692-698. doi:10.1016/j.snb.2011.01.031 es_ES
dc.description.references García, F., García, J. M., García-Acosta, B., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2005). Pyrylium-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chemical Communications, (22), 2790. doi:10.1039/b502374b es_ES
dc.description.references Zhang, X., Li, C., Cheng, X., Wang, X., & Zhang, B. (2008). A near-infrared croconium dye-based colorimetric chemodosimeter for biological thiols and cyanide anion. Sensors and Actuators B: Chemical, 129(1), 152-157. doi:10.1016/j.snb.2007.07.094 es_ES
dc.description.references Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241 es_ES
dc.description.references Duxbury, D. F. (1993). The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chemical Reviews, 93(1), 381-433. doi:10.1021/cr00017a018 es_ES
dc.description.references Afkhami, A., & Sarlak, N. (2007). A novel cyanide sensing phase based on immobilization of methyl violet on a triacetylcellulose membrane. Sensors and Actuators B: Chemical, 122(2), 437-441. doi:10.1016/j.snb.2006.06.012 es_ES
dc.description.references Kaur, P., Sareen, D., Kaur, S., & Singh, K. (2009). An efficacious «naked-eye» selective sensing of cyanide from aqueous solutions using a triarylmethane leuconitrile. Inorganic Chemistry Communications, 12(3), 272-275. doi:10.1016/j.inoche.2008.12.025 es_ES
dc.description.references Jarikov, V. V., & Neckers, D. C. (2001). Photochemistry and Photophysics of Triarylmethane Dye Leuconitriles. The Journal of Organic Chemistry, 66(3), 659-671. doi:10.1021/jo000374a es_ES
dc.description.references Miller, R. M., Spears, K. G., Gong, J. H., & Wach, M. (1994). Solvent Gating of Intramolecular Electron Transfer. The Journal of Physical Chemistry, 98(5), 1376-1385. doi:10.1021/j100056a002 es_ES
dc.description.references Kimura, K., Mizutani, R., Yokoyama, M., Arakawa, R., Matsubayashi, G., Okamoto, M., & Doe, H. (1997). All-or-None Type Photochemical Switching of Cation Binding with Malachite Green Carrying a Bis(monoazacrown ether) Moiety. Journal of the American Chemical Society, 119(8), 2062-2063. doi:10.1021/ja963405l es_ES
dc.description.references Uda, R. M., Oue, M., & Kimura, K. (2002). Specific behavior of crowned crystal violet in cation complexation and photochromism. Journal of Supramolecular Chemistry, 2(1-3), 311-316. doi:10.1016/s1472-7862(03)00086-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem