Mostrar el registro sencillo del ítem
dc.contributor.author | Gotor Candel, Raul Jesús | es_ES |
dc.contributor.author | Costero Nieto, Ana María | es_ES |
dc.contributor.author | Gil Grau, Salvador | es_ES |
dc.contributor.author | Parra Álvarez, Margarita | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Gaviña Costero, Pablo | es_ES |
dc.date.accessioned | 2014-09-26T12:12:50Z | |
dc.date.available | 2014-09-26T12:12:50Z | |
dc.date.issued | 2013-06-25 | |
dc.identifier.issn | 1359-7345 | |
dc.identifier.uri | http://hdl.handle.net/10251/40299 | |
dc.description.abstract | Two triphenylmethane based chemodosimeters for selective and chromogenic sensing of cyanide anions in aqueous environments and of hydrogen cyanide in gas phase were prepared and studied. | es_ES |
dc.description.sponsorship | We thank the Spanish Government (project MAT2012-38429-C04-02) for its financial support. R.G. acknowledges Spanish MICINN for a predoctoral fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Communications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Photophysics | es_ES |
dc.subject | Chemodosimeter | es_ES |
dc.subject | Photochemistry | es_ES |
dc.subject | Sensor media | es_ES |
dc.subject | Anion recognition | es_ES |
dc.subject | Sodium Cyanide | es_ES |
dc.subject | Aqueous solutions | es_ES |
dc.subject | Spiropyran conjugate | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Selective and Sensitive Chromogenic Detection of Cyanide and HCN in Solution and in Gas Phase | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c3cc80006g | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-02/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE EXPLOSIVOS Y GASES PELIGROSOS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Gotor Candel, RJ.; Costero Nieto, AM.; Gil Grau, S.; Parra Álvarez, M.; Martínez Mañez, R.; Sancenón Galarza, F.; Gaviña Costero, P. (2013). Selective and Sensitive Chromogenic Detection of Cyanide and HCN in Solution and in Gas Phase. Chemical Communications. 49(50):5669-5671. https://doi.org/10.1039/c3cc80006g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c3cc80006g | es_ES |
dc.description.upvformatpinicio | 5669 | es_ES |
dc.description.upvformatpfin | 5671 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 49 | es_ES |
dc.description.issue | 50 | es_ES |
dc.relation.senia | 258685 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Yang, Y. C., Baker, J. A., & Ward, J. R. (1992). Decontamination of chemical warfare agents. Chemical Reviews, 92(8), 1729-1743. doi:10.1021/cr00016a003 | es_ES |
dc.description.references | Keim, M. E. (2006). Terrorism Involving Cyanide: The Prospect of Improving Preparedness in the Prehospital Setting. Prehospital and Disaster Medicine, 21(S2), s56-s60. doi:10.1017/s1049023x00015910 | es_ES |
dc.description.references | Shan, D., Mousty, C., & Cosnier, S. (2004). Subnanomolar Cyanide Detection at Polyphenol Oxidase/Clay Biosensors. Analytical Chemistry, 76(1), 178-183. doi:10.1021/ac034713m | es_ES |
dc.description.references | Lindsay, A. E., & O’Hare, D. (2006). The development of an electrochemical sensor for the determination of cyanide in physiological solutions. Analytica Chimica Acta, 558(1-2), 158-163. doi:10.1016/j.aca.2005.11.036 | es_ES |
dc.description.references | Shiraishi, Y., Sumiya, S., Manabe, K., & Hirai, T. (2011). Thermoresponsive Copolymer Containing a Coumarin–Spiropyran Conjugate: Reusable Fluorescent Sensor for Cyanide Anion Detection in Water. ACS Applied Materials & Interfaces, 3(12), 4649-4656. doi:10.1021/am201069n | es_ES |
dc.description.references | Vallejos, S., Estévez, P., García, F. C., Serna, F., de la Peña, J. L., & García, J. M. (2010). Putting to work organic sensing molecules in aqueous media: fluorene derivative-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chemical Communications, 46(42), 7951. doi:10.1039/c0cc02143a | es_ES |
dc.description.references | Kim, H. J., Ko, K. C., Lee, J. H., Lee, J. Y., & Kim, J. S. (2011). KCN sensor: unique chromogenic and ‘turn-on’ fluorescent chemodosimeter: rapid response and high selectivity. Chemical Communications, 47(10), 2886. doi:10.1039/c0cc05018k | es_ES |
dc.description.references | Jin, W. J., Fernández-Argüelles, M. T., Costa-Fernández, J. M., Pereiro, R., & Sanz-Medel, A. (2005). Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun., (7), 883-885. doi:10.1039/b414858d | es_ES |
dc.description.references | Touceda-Varela, A., Stevenson, E. I., Galve-Gasión, J. A., Dryden, D. T. F., & Mareque-Rivas, J. C. (2008). Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots. Chemical Communications, (17), 1998. doi:10.1039/b716194h | es_ES |
dc.description.references | Kim, Y.-H., & Hong, J.-I. (2002). Ion pair recognition by Zn–porphyrin/crown ether conjugates: visible sensing of sodium cyanideElectronic supplementary information (ESI) available: selected spectral data for 3a and 3b, detailed dimerization phenomena, and Fig. S1–8. See http://www.rsc.org/suppdata/cc/b1/b109596j/. Chemical Communications, (5), 512-513. doi:10.1039/b109596j | es_ES |
dc.description.references | Liu, H., Shao, X.-B., Jia, M.-X., Jiang, X.-K., Li, Z.-T., & Chen, G.-J. (2005). Selective recognition of sodium cyanide and potassium cyanide by diaza-crown ether-capped Zn-porphyrin receptors in polar solvents. Tetrahedron, 61(34), 8095-8100. doi:10.1016/j.tet.2005.06.058 | es_ES |
dc.description.references | Chow, C.-F., Lam, M. H. W., & Wong, W.-Y. (2004). A Heterobimetallic Ruthenium(II)−Copper(II) Donor−Acceptor Complex as a Chemodosimetric Ensemble for Selective Cyanide Detection. Inorganic Chemistry, 43(26), 8387-8393. doi:10.1021/ic0492587 | es_ES |
dc.description.references | Zelder, F. H. (2008). Specific Colorimetric Detection of Cyanide Triggered by a Conformational Switch in Vitamin B12. Inorganic Chemistry, 47(4), 1264-1266. doi:10.1021/ic702368b | es_ES |
dc.description.references | Zeng, Q., Cai, P., Li, Z., Qin, J., & Tang, B. Z. (2008). An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide. Chemical Communications, (9), 1094. doi:10.1039/b717764j | es_ES |
dc.description.references | Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368j | es_ES |
dc.description.references | Isaad, J., & El Achari, A. (2011). Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials. Tetrahedron, 67(26), 4939-4947. doi:10.1016/j.tet.2011.04.061 | es_ES |
dc.description.references | Lin, Y.-D., Peng, Y.-S., Su, W., Tu, C.-H., Sun, C.-H., & Chow, T. J. (2012). A highly selective colorimetric and turn-on fluorescent probe for cyanide anion. Tetrahedron, 68(11), 2523-2526. doi:10.1016/j.tet.2012.01.026 | es_ES |
dc.description.references | Guliyev, R., Ozturk, S., Sahin, E., & Akkaya, E. U. (2012). Expanded Bodipy Dyes: Anion Sensing Using a Bodipy Analog with an Additional Difluoroboron Bridge. Organic Letters, 14(6), 1528-1531. doi:10.1021/ol300260q | es_ES |
dc.description.references | Dong, M., Peng, Y., Dong, Y.-M., Tang, N., & Wang, Y.-W. (2011). A Selective, Colorimetric, and Fluorescent Chemodosimeter for Relay Recognition of Fluoride and Cyanide Anions Based on 1,1′-Binaphthyl Scaffold. Organic Letters, 14(1), 130-133. doi:10.1021/ol202926e | es_ES |
dc.description.references | Sumiya, S., Doi, T., Shiraishi, Y., & Hirai, T. (2012). Colorimetric sensing of cyanide anion in aqueous media with a fluorescein–spiropyran conjugate. Tetrahedron, 68(2), 690-696. doi:10.1016/j.tet.2011.10.097 | es_ES |
dc.description.references | Feng, L., Musto, C. J., Kemling, J. W., Lim, S. H., Zhong, W., & Suslick, K. S. (2010). Colorimetric Sensor Array for Determination and Identification of Toxic Industrial Chemicals. Analytical Chemistry, 82(22), 9433-9440. doi:10.1021/ac1020886 | es_ES |
dc.description.references | Yang, M., He, J., Hu, X., Yan, C., Cheng, Z., Zhao, Y., & Zuo, G. (2011). Copper oxide nanoparticle sensors for hydrogen cyanide detection: Unprecedented selectivity and sensitivity. Sensors and Actuators B: Chemical, 155(2), 692-698. doi:10.1016/j.snb.2011.01.031 | es_ES |
dc.description.references | García, F., García, J. M., García-Acosta, B., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2005). Pyrylium-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chemical Communications, (22), 2790. doi:10.1039/b502374b | es_ES |
dc.description.references | Zhang, X., Li, C., Cheng, X., Wang, X., & Zhang, B. (2008). A near-infrared croconium dye-based colorimetric chemodosimeter for biological thiols and cyanide anion. Sensors and Actuators B: Chemical, 129(1), 152-157. doi:10.1016/j.snb.2007.07.094 | es_ES |
dc.description.references | Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241 | es_ES |
dc.description.references | Duxbury, D. F. (1993). The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chemical Reviews, 93(1), 381-433. doi:10.1021/cr00017a018 | es_ES |
dc.description.references | Afkhami, A., & Sarlak, N. (2007). A novel cyanide sensing phase based on immobilization of methyl violet on a triacetylcellulose membrane. Sensors and Actuators B: Chemical, 122(2), 437-441. doi:10.1016/j.snb.2006.06.012 | es_ES |
dc.description.references | Kaur, P., Sareen, D., Kaur, S., & Singh, K. (2009). An efficacious «naked-eye» selective sensing of cyanide from aqueous solutions using a triarylmethane leuconitrile. Inorganic Chemistry Communications, 12(3), 272-275. doi:10.1016/j.inoche.2008.12.025 | es_ES |
dc.description.references | Jarikov, V. V., & Neckers, D. C. (2001). Photochemistry and Photophysics of Triarylmethane Dye Leuconitriles. The Journal of Organic Chemistry, 66(3), 659-671. doi:10.1021/jo000374a | es_ES |
dc.description.references | Miller, R. M., Spears, K. G., Gong, J. H., & Wach, M. (1994). Solvent Gating of Intramolecular Electron Transfer. The Journal of Physical Chemistry, 98(5), 1376-1385. doi:10.1021/j100056a002 | es_ES |
dc.description.references | Kimura, K., Mizutani, R., Yokoyama, M., Arakawa, R., Matsubayashi, G., Okamoto, M., & Doe, H. (1997). All-or-None Type Photochemical Switching of Cation Binding with Malachite Green Carrying a Bis(monoazacrown ether) Moiety. Journal of the American Chemical Society, 119(8), 2062-2063. doi:10.1021/ja963405l | es_ES |
dc.description.references | Uda, R. M., Oue, M., & Kimura, K. (2002). Specific behavior of crowned crystal violet in cation complexation and photochromism. Journal of Supramolecular Chemistry, 2(1-3), 311-316. doi:10.1016/s1472-7862(03)00086-8 | es_ES |