- -

Assessment of Parameters Influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat productioi

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Assessment of Parameters Influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat productioi

Show simple item record

Files in this item

dc.contributor.author Areias, A.C. es_ES
dc.contributor.author Gómez-Tejedor, José Antonio es_ES
dc.contributor.author Sencadas, V. es_ES
dc.contributor.author Alio, J. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros-Mendez, S. es_ES
dc.date.accessioned 2014-09-26T12:14:28Z
dc.date.available 2014-09-26T12:14:28Z
dc.date.issued 2012-06
dc.identifier.issn 0032-3888
dc.identifier.uri http://hdl.handle.net/10251/40304
dc.description.abstract Electrospun chitosan nanofiber mats have been obtained using chitosan solutions in a mixture of trifluoroacetic acid and dichloromethane. The relationship between processing parameters (solvent composition, polymer concentration in the solution, feeding rate, applied voltage, traveling distance between the needle, and the collector) and fiber morphology was studied. Taguchi's methodology was followed to determine which parameters have the strongest influence on mean fiber diameter and fiber homogeneity. Chitosan nanofibers obtained with this procedure were water soluble due to the protonation of amine side groups but were successfully neutralized by immersion in calcium carbonate solutions. It was established that fiber diameter is mainly determined by the solution concentration and the distance from the needle to the collector while other parameters have less influence. The set of parameters that produce the thinnest fibers were a concentration of 8 wt%, a TFA/DCM ratio of 80:20 (v/v%), a voltage of 30 kV, a flow rate of 6.0 mL/h, a gap distance of 10 cm, using a needle diameter of 0.5, allowing to produce randomly oriented mats with a mean fiber thickness of 66 nm. © 2012 Society of Plastics Engineers. es_ES
dc.description.sponsorship Contract grant sponsor: Portuguese Foundation for Science and Technology (FCT); contract grant number: NANO/NMed-SD/0156/2007; Contract grant sponsor: FCT; contract grant number: SFRH/BPD/63148/2009; Contract grant sponsor: Spanish Ministry of Science and Innovation; contract grant number: MAT2010-21611-C03-01; Contract grant sponsor: Programa Nacional de Internacionalizacion de la I+D; contract grant number: EUI2008-00126; Contract grant sponsors: Regenerative Medicine collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III (Ministry of Science and Innovation); Contract grant sponsors: Spanish Ministry of Science and Innovation, Centro para el Desarrollo Tecnologico Industrial (CDTI), CENIT: "Customized Eye Care'' and CeyeC; contract grant number: CEN-20091021; Contract grant sponsor: The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Polymer Engineering and Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Applied voltages es_ES
dc.subject Carbonate solutions es_ES
dc.subject Chitosan nanofibers es_ES
dc.subject Chitosan solution es_ES
dc.subject Electrospuns es_ES
dc.subject Feeding rate es_ES
dc.subject Fiber characteristics es_ES
dc.subject Fiber diameters es_ES
dc.subject Chitin es_ES
dc.subject Biomaterials es_ES
dc.subject Regeneration es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Assessment of Parameters Influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat productioi es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/pen.23070
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//EUI2008-00126/ES/SMART JOINT IMPLANTS USING BIONANOCOMPOSITES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
dc.relation.projectID info:eu-repo/grantAgreement/CIBER-BBN//00028336 SFPECEPP/ES/Customized Eye Care-Oftalmologia personalizada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CEN-20091021/ES/CUSTOMATIZED EYE CARE. OFTALMOLOGÍA PERSONALIZADA Y MÍNIMAMENTE INVASIVA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Areias, A.; Gómez-Tejedor, JA.; Sencadas, V.; Alio, J.; Gómez Ribelles, JL.; Lanceros-Mendez, S. (2012). Assessment of Parameters Influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat productioi. Polymer Engineering and Science. 52(6):1293-1300. https://doi.org/10.1002/pen.23070 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/pen.23070 es_ES
dc.description.upvformatpinicio 1293 es_ES
dc.description.upvformatpfin 1300 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 232036
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.contributor.funder Centro para el Desarrollo Tecnológico Industrial es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Ward, B., Brown, S., & Krebsbach, P. (2010). Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies. Oral Diseases, 16(8), 709-716. doi:10.1111/j.1601-0825.2010.01682.x es_ES
dc.description.references Destro, F., Borgatti, M., Iafelice, B., Gavioli, R., Braun, T., Bauer, J., … Gambari, R. (2010). Effects of biomaterials for Lab-on-a-chip production on cell growth and expression of differentiated functions of leukemic cell lines. Journal of Materials Science: Materials in Medicine, 21(9), 2653-2664. doi:10.1007/s10856-010-4125-2 es_ES
dc.description.references Deng, M., Nair, L. S., Nukavarapu, S. P., Kumbar, S. G., Jiang, T., Weikel, A. L., … Laurencin, C. T. (2010). In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering. Advanced Functional Materials, 20(17), 2794-2806. doi:10.1002/adfm.201000968 es_ES
dc.description.references A. Formhals U.S. Patent es_ES
dc.description.references A. Formhals 1940 es_ES
dc.description.references Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. doi:10.1142/9789812567611 es_ES
dc.description.references Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16), 4403-4412. doi:10.1016/s0032-3861(02)00275-6 es_ES
dc.description.references Boudriot, U., Dersch, R., Greiner, A., & Wendorff, J. H. (2006). Electrospinning Approaches Toward Scaffold Engineering?A Brief Overview. Artificial Organs, 30(10), 785-792. doi:10.1111/j.1525-1594.2006.00301.x es_ES
dc.description.references Arvanitoyannis, I., Kolokuris, I., Nakayama, A., Yamamoto, N., & Aiba, S. (1997). Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydrate Polymers, 34(1-2), 9-19. doi:10.1016/s0144-8617(97)00089-1 es_ES
dc.description.references Arvanitoyannis, I. S., Nakayama, A., & Aiba, S. (1998). Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydrate Polymers, 37(4), 371-382. doi:10.1016/s0144-8617(98)00083-6 es_ES
dc.description.references ARVANITOYANNIS, I. S. (1999). Totally and Partially Biodegradable Polymer Blends Based on Natural and Synthetic Macromolecules: Preparation, Physical Properties, and Potential as Food Packaging Materials. Journal of Macromolecular Science, Part C: Polymer Reviews, 39(2), 205-271. doi:10.1081/mc-100101420 es_ES
dc.description.references Yeh, H.-Y., & Lin, J.-C. (2008). Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection–deprotection strategy. Journal of Biomaterials Science, Polymer Edition, 19(3), 291-310. doi:10.1163/156856208783720985 es_ES
dc.description.references Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. doi:10.1016/j.progpolymsci.2006.06.001 es_ES
dc.description.references Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641-678. doi:10.1016/j.progpolymsci.2009.04.001 es_ES
dc.description.references Kasaai, M. R. (2009). Various Methods for Determination of the Degree of N-Acetylation of Chitin and Chitosan: A Review. Journal of Agricultural and Food Chemistry, 57(5), 1667-1676. doi:10.1021/jf803001m es_ES
dc.description.references Harish Prashanth, K. V., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science & Technology, 18(3), 117-131. doi:10.1016/j.tifs.2006.10.022 es_ES
dc.description.references Sangsanoh, P., & Supaphol, P. (2006). Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions. Biomacromolecules, 7(10), 2710-2714. doi:10.1021/bm060286l es_ES
dc.description.references Ohkawa, K., Cha, D., Kim, H., Nishida, A., & Yamamoto, H. (2004). Electrospinning of Chitosan. Macromolecular Rapid Communications, 25(18), 1600-1605. doi:10.1002/marc.200400253 es_ES
dc.description.references Neamnark, A., Rujiravanit, R., & Supaphol, P. (2006). Electrospinning of hexanoyl chitosan. Carbohydrate Polymers, 66(3), 298-305. doi:10.1016/j.carbpol.2006.03.015 es_ES
dc.description.references Schiffman, J. D., Stulga, L. A., & Schauer, C. L. (2009). Chitin and chitosan: Transformations due to the electrospinning process. Polymer Engineering & Science, 49(10), 1918-1928. doi:10.1002/pen.21434 es_ES
dc.description.references GENG, X., KWON, O., & JANG, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. doi:10.1016/j.biomaterials.2005.01.066 es_ES
dc.description.references Homayoni, H., Ravandi, S. A. H., & Valizadeh, M. (2009). Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77(3), 656-661. doi:10.1016/j.carbpol.2009.02.008 es_ES
dc.description.references De Vrieze, S., Westbroek, P., Van Camp, T., & Van Langenhove, L. (2007). Electrospinning of chitosan nanofibrous structures: feasibility study. Journal of Materials Science, 42(19), 8029-8034. doi:10.1007/s10853-006-1485-6 es_ES
dc.description.references Wang, W., Itoh, S., Konno, K., Kikkawa, T., Ichinose, S., Sakai, K., … Watabe, K. (2009). Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. Journal of Biomedical Materials Research Part A, 91A(4), 994-1005. doi:10.1002/jbm.a.32329 es_ES
dc.description.references Maghsoodloo, S., Ozdemir, G., Jordan, V., & Huang, C.-H. (2004). Strengths and limitations of taguchi’s contributions to quality, manufacturing, and process engineering. Journal of Manufacturing Systems, 23(2), 73-126. doi:10.1016/s0278-6125(05)00004-x es_ES
dc.description.references Heikkilä, P., & Harlin, A. (2008). Parameter study of electrospinning of polyamide-6. European Polymer Journal, 44(10), 3067-3079. doi:10.1016/j.eurpolymj.2008.06.032 es_ES
dc.description.references Gómez-Tejedor, J. A., Overberghe, N. V., Rico, P., & Ribelles, J. L. G. (2011). Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. European Polymer Journal, 47(2), 119-129. doi:10.1016/j.eurpolymj.2010.10.034 es_ES
dc.description.references Honkhambe, P. N., Avadhani, C. V., Wadgaonkar, P. P., & Salunkhe, M. M. (2007). Synthesis and characterization of new aromatic polyesters containing biphenyl side groups. Journal of Applied Polymer Science, 106(5), 3105-3110. doi:10.1002/app.25862 es_ES
dc.description.references Schiffman, J. D., & Schauer, C. L. (2007). Cross-Linking Chitosan Nanofibers. Biomacromolecules, 8(2), 594-601. doi:10.1021/bm060804s es_ES
dc.description.references Veleirinho, B., Rei, M. F., & Lopes-DA-Silva, J. A. (2008). Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. Journal of Polymer Science Part B: Polymer Physics, 46(5), 460-471. doi:10.1002/polb.21380 es_ES
dc.description.references Schiffman, J. D., & Schauer, C. L. (2007). One-Step Electrospinning of Cross-Linked Chitosan Fibers. Biomacromolecules, 8(9), 2665-2667. doi:10.1021/bm7006983 es_ES
dc.description.references Ding, B., Li, C., Miyauchi, Y., Kuwaki, O., & Shiratori, S. (2006). Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology, 17(15), 3685-3691. doi:10.1088/0957-4484/17/15/011 es_ES
dc.description.references Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 41(3), 423-432. doi:10.1016/j.eurpolymj.2004.10.027 es_ES
dc.description.references Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4), 493-497. doi:10.1016/s0167-577x(03)00532-9 es_ES
dc.description.references Haghi, A. K., & Akbari, M. (2007). Trends in electrospinning of natural nanofibers. physica status solidi (a), 204(6), 1830-1834. doi:10.1002/pssa.200675301 es_ES
dc.description.references Zhang, K.-H., Yu, Q.-Z., & Mo, X.-M. (2011). Fabrication and Intermolecular Interactions of Silk Fibroin/Hydroxybutyl Chitosan Blended Nanofibers. International Journal of Molecular Sciences, 12(4), 2187-2199. doi:10.3390/ijms12042187 es_ES
dc.description.references Chuysinuan, P., Chimnoi, N., Techasakul, S., & Supaphol, P. (2009). Gallic Acid-Loaded Electrospun Poly(L-Lactic Acid) Fiber Mats and their Release Characteristic. Macromolecular Chemistry and Physics, 210(10), 814-822. doi:10.1002/macp.200800614 es_ES
dc.description.references Baumgarten, P. K. (1971). Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 36(1), 71-79. doi:10.1016/0021-9797(71)90241-4 es_ES
dc.description.references He, J.-H., Wan, Y.-Q., & Yu, J.-Y. (2008). Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers and Polymers, 9(2), 140-142. doi:10.1007/s12221-008-0023-3 es_ES


This item appears in the following Collection(s)

Show simple item record