Mostrar el registro sencillo del ítem
dc.contributor.author | Areias, A.C. | es_ES |
dc.contributor.author | Gómez-Tejedor, José Antonio | es_ES |
dc.contributor.author | Sencadas, V. | es_ES |
dc.contributor.author | Alio, J. | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Lanceros-Mendez, S. | es_ES |
dc.date.accessioned | 2014-09-26T12:14:28Z | |
dc.date.available | 2014-09-26T12:14:28Z | |
dc.date.issued | 2012-06 | |
dc.identifier.issn | 0032-3888 | |
dc.identifier.uri | http://hdl.handle.net/10251/40304 | |
dc.description.abstract | Electrospun chitosan nanofiber mats have been obtained using chitosan solutions in a mixture of trifluoroacetic acid and dichloromethane. The relationship between processing parameters (solvent composition, polymer concentration in the solution, feeding rate, applied voltage, traveling distance between the needle, and the collector) and fiber morphology was studied. Taguchi's methodology was followed to determine which parameters have the strongest influence on mean fiber diameter and fiber homogeneity. Chitosan nanofibers obtained with this procedure were water soluble due to the protonation of amine side groups but were successfully neutralized by immersion in calcium carbonate solutions. It was established that fiber diameter is mainly determined by the solution concentration and the distance from the needle to the collector while other parameters have less influence. The set of parameters that produce the thinnest fibers were a concentration of 8 wt%, a TFA/DCM ratio of 80:20 (v/v%), a voltage of 30 kV, a flow rate of 6.0 mL/h, a gap distance of 10 cm, using a needle diameter of 0.5, allowing to produce randomly oriented mats with a mean fiber thickness of 66 nm. © 2012 Society of Plastics Engineers. | es_ES |
dc.description.sponsorship | Contract grant sponsor: Portuguese Foundation for Science and Technology (FCT); contract grant number: NANO/NMed-SD/0156/2007; Contract grant sponsor: FCT; contract grant number: SFRH/BPD/63148/2009; Contract grant sponsor: Spanish Ministry of Science and Innovation; contract grant number: MAT2010-21611-C03-01; Contract grant sponsor: Programa Nacional de Internacionalizacion de la I+D; contract grant number: EUI2008-00126; Contract grant sponsors: Regenerative Medicine collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III (Ministry of Science and Innovation); Contract grant sponsors: Spanish Ministry of Science and Innovation, Centro para el Desarrollo Tecnologico Industrial (CDTI), CENIT: "Customized Eye Care'' and CeyeC; contract grant number: CEN-20091021; Contract grant sponsor: The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Polymer Engineering and Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Applied voltages | es_ES |
dc.subject | Carbonate solutions | es_ES |
dc.subject | Chitosan nanofibers | es_ES |
dc.subject | Chitosan solution | es_ES |
dc.subject | Electrospuns | es_ES |
dc.subject | Feeding rate | es_ES |
dc.subject | Fiber characteristics | es_ES |
dc.subject | Fiber diameters | es_ES |
dc.subject | Chitin | es_ES |
dc.subject | Biomaterials | es_ES |
dc.subject | Regeneration | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Assessment of Parameters Influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat productioi | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pen.23070 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//EUI2008-00126/ES/SMART JOINT IMPLANTS USING BIONANOCOMPOSITES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/CIBER-BBN//00028336 SFPECEPP/ES/Customized Eye Care-Oftalmologia personalizada/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CEN-20091021/ES/CUSTOMATIZED EYE CARE. OFTALMOLOGÍA PERSONALIZADA Y MÍNIMAMENTE INVASIVA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Areias, A.; Gómez-Tejedor, JA.; Sencadas, V.; Alio, J.; Gómez Ribelles, JL.; Lanceros-Mendez, S. (2012). Assessment of Parameters Influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat productioi. Polymer Engineering and Science. 52(6):1293-1300. https://doi.org/10.1002/pen.23070 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/pen.23070 | es_ES |
dc.description.upvformatpinicio | 1293 | es_ES |
dc.description.upvformatpfin | 1300 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 52 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 232036 | |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.contributor.funder | Centro para el Desarrollo Tecnológico Industrial | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | |
dc.description.references | Ward, B., Brown, S., & Krebsbach, P. (2010). Bioengineering strategies for regeneration of craniofacial bone: a review of emerging technologies. Oral Diseases, 16(8), 709-716. doi:10.1111/j.1601-0825.2010.01682.x | es_ES |
dc.description.references | Destro, F., Borgatti, M., Iafelice, B., Gavioli, R., Braun, T., Bauer, J., … Gambari, R. (2010). Effects of biomaterials for Lab-on-a-chip production on cell growth and expression of differentiated functions of leukemic cell lines. Journal of Materials Science: Materials in Medicine, 21(9), 2653-2664. doi:10.1007/s10856-010-4125-2 | es_ES |
dc.description.references | Deng, M., Nair, L. S., Nukavarapu, S. P., Kumbar, S. G., Jiang, T., Weikel, A. L., … Laurencin, C. T. (2010). In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering. Advanced Functional Materials, 20(17), 2794-2806. doi:10.1002/adfm.201000968 | es_ES |
dc.description.references | A. Formhals U.S. Patent | es_ES |
dc.description.references | A. Formhals 1940 | es_ES |
dc.description.references | Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. doi:10.1142/9789812567611 | es_ES |
dc.description.references | Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16), 4403-4412. doi:10.1016/s0032-3861(02)00275-6 | es_ES |
dc.description.references | Boudriot, U., Dersch, R., Greiner, A., & Wendorff, J. H. (2006). Electrospinning Approaches Toward Scaffold Engineering?A Brief Overview. Artificial Organs, 30(10), 785-792. doi:10.1111/j.1525-1594.2006.00301.x | es_ES |
dc.description.references | Arvanitoyannis, I., Kolokuris, I., Nakayama, A., Yamamoto, N., & Aiba, S. (1997). Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydrate Polymers, 34(1-2), 9-19. doi:10.1016/s0144-8617(97)00089-1 | es_ES |
dc.description.references | Arvanitoyannis, I. S., Nakayama, A., & Aiba, S. (1998). Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydrate Polymers, 37(4), 371-382. doi:10.1016/s0144-8617(98)00083-6 | es_ES |
dc.description.references | ARVANITOYANNIS, I. S. (1999). Totally and Partially Biodegradable Polymer Blends Based on Natural and Synthetic Macromolecules: Preparation, Physical Properties, and Potential as Food Packaging Materials. Journal of Macromolecular Science, Part C: Polymer Reviews, 39(2), 205-271. doi:10.1081/mc-100101420 | es_ES |
dc.description.references | Yeh, H.-Y., & Lin, J.-C. (2008). Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection–deprotection strategy. Journal of Biomaterials Science, Polymer Edition, 19(3), 291-310. doi:10.1163/156856208783720985 | es_ES |
dc.description.references | Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. doi:10.1016/j.progpolymsci.2006.06.001 | es_ES |
dc.description.references | Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641-678. doi:10.1016/j.progpolymsci.2009.04.001 | es_ES |
dc.description.references | Kasaai, M. R. (2009). Various Methods for Determination of the Degree of N-Acetylation of Chitin and Chitosan: A Review. Journal of Agricultural and Food Chemistry, 57(5), 1667-1676. doi:10.1021/jf803001m | es_ES |
dc.description.references | Harish Prashanth, K. V., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends in Food Science & Technology, 18(3), 117-131. doi:10.1016/j.tifs.2006.10.022 | es_ES |
dc.description.references | Sangsanoh, P., & Supaphol, P. (2006). Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions. Biomacromolecules, 7(10), 2710-2714. doi:10.1021/bm060286l | es_ES |
dc.description.references | Ohkawa, K., Cha, D., Kim, H., Nishida, A., & Yamamoto, H. (2004). Electrospinning of Chitosan. Macromolecular Rapid Communications, 25(18), 1600-1605. doi:10.1002/marc.200400253 | es_ES |
dc.description.references | Neamnark, A., Rujiravanit, R., & Supaphol, P. (2006). Electrospinning of hexanoyl chitosan. Carbohydrate Polymers, 66(3), 298-305. doi:10.1016/j.carbpol.2006.03.015 | es_ES |
dc.description.references | Schiffman, J. D., Stulga, L. A., & Schauer, C. L. (2009). Chitin and chitosan: Transformations due to the electrospinning process. Polymer Engineering & Science, 49(10), 1918-1928. doi:10.1002/pen.21434 | es_ES |
dc.description.references | GENG, X., KWON, O., & JANG, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 26(27), 5427-5432. doi:10.1016/j.biomaterials.2005.01.066 | es_ES |
dc.description.references | Homayoni, H., Ravandi, S. A. H., & Valizadeh, M. (2009). Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77(3), 656-661. doi:10.1016/j.carbpol.2009.02.008 | es_ES |
dc.description.references | De Vrieze, S., Westbroek, P., Van Camp, T., & Van Langenhove, L. (2007). Electrospinning of chitosan nanofibrous structures: feasibility study. Journal of Materials Science, 42(19), 8029-8034. doi:10.1007/s10853-006-1485-6 | es_ES |
dc.description.references | Wang, W., Itoh, S., Konno, K., Kikkawa, T., Ichinose, S., Sakai, K., … Watabe, K. (2009). Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. Journal of Biomedical Materials Research Part A, 91A(4), 994-1005. doi:10.1002/jbm.a.32329 | es_ES |
dc.description.references | Maghsoodloo, S., Ozdemir, G., Jordan, V., & Huang, C.-H. (2004). Strengths and limitations of taguchi’s contributions to quality, manufacturing, and process engineering. Journal of Manufacturing Systems, 23(2), 73-126. doi:10.1016/s0278-6125(05)00004-x | es_ES |
dc.description.references | Heikkilä, P., & Harlin, A. (2008). Parameter study of electrospinning of polyamide-6. European Polymer Journal, 44(10), 3067-3079. doi:10.1016/j.eurpolymj.2008.06.032 | es_ES |
dc.description.references | Gómez-Tejedor, J. A., Overberghe, N. V., Rico, P., & Ribelles, J. L. G. (2011). Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes. European Polymer Journal, 47(2), 119-129. doi:10.1016/j.eurpolymj.2010.10.034 | es_ES |
dc.description.references | Honkhambe, P. N., Avadhani, C. V., Wadgaonkar, P. P., & Salunkhe, M. M. (2007). Synthesis and characterization of new aromatic polyesters containing biphenyl side groups. Journal of Applied Polymer Science, 106(5), 3105-3110. doi:10.1002/app.25862 | es_ES |
dc.description.references | Schiffman, J. D., & Schauer, C. L. (2007). Cross-Linking Chitosan Nanofibers. Biomacromolecules, 8(2), 594-601. doi:10.1021/bm060804s | es_ES |
dc.description.references | Veleirinho, B., Rei, M. F., & Lopes-DA-Silva, J. A. (2008). Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. Journal of Polymer Science Part B: Polymer Physics, 46(5), 460-471. doi:10.1002/polb.21380 | es_ES |
dc.description.references | Schiffman, J. D., & Schauer, C. L. (2007). One-Step Electrospinning of Cross-Linked Chitosan Fibers. Biomacromolecules, 8(9), 2665-2667. doi:10.1021/bm7006983 | es_ES |
dc.description.references | Ding, B., Li, C., Miyauchi, Y., Kuwaki, O., & Shiratori, S. (2006). Formation of novel 2D polymer nanowebs via electrospinning. Nanotechnology, 17(15), 3685-3691. doi:10.1088/0957-4484/17/15/011 | es_ES |
dc.description.references | Zhang, C., Yuan, X., Wu, L., Han, Y., & Sheng, J. (2005). Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal, 41(3), 423-432. doi:10.1016/j.eurpolymj.2004.10.027 | es_ES |
dc.description.references | Koski, A., Yim, K., & Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3-4), 493-497. doi:10.1016/s0167-577x(03)00532-9 | es_ES |
dc.description.references | Haghi, A. K., & Akbari, M. (2007). Trends in electrospinning of natural nanofibers. physica status solidi (a), 204(6), 1830-1834. doi:10.1002/pssa.200675301 | es_ES |
dc.description.references | Zhang, K.-H., Yu, Q.-Z., & Mo, X.-M. (2011). Fabrication and Intermolecular Interactions of Silk Fibroin/Hydroxybutyl Chitosan Blended Nanofibers. International Journal of Molecular Sciences, 12(4), 2187-2199. doi:10.3390/ijms12042187 | es_ES |
dc.description.references | Chuysinuan, P., Chimnoi, N., Techasakul, S., & Supaphol, P. (2009). Gallic Acid-Loaded Electrospun Poly(L-Lactic Acid) Fiber Mats and their Release Characteristic. Macromolecular Chemistry and Physics, 210(10), 814-822. doi:10.1002/macp.200800614 | es_ES |
dc.description.references | Baumgarten, P. K. (1971). Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 36(1), 71-79. doi:10.1016/0021-9797(71)90241-4 | es_ES |
dc.description.references | He, J.-H., Wan, Y.-Q., & Yu, J.-Y. (2008). Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers and Polymers, 9(2), 140-142. doi:10.1007/s12221-008-0023-3 | es_ES |