Mostrar el registro sencillo del ítem
dc.contributor.author | Torres, Y. | es_ES |
dc.contributor.author | Rodríguez, J.A. | es_ES |
dc.contributor.author | Arias, S. | es_ES |
dc.contributor.author | Echeverry, M. | es_ES |
dc.contributor.author | Robledo, S. | es_ES |
dc.contributor.author | Amigó Borrás, Vicente | es_ES |
dc.contributor.author | Pavón, J. J. | es_ES |
dc.date.accessioned | 2014-09-26T13:48:02Z | |
dc.date.available | 2014-09-26T13:48:02Z | |
dc.date.issued | 2012-09 | |
dc.identifier.issn | 0022-2461 | |
dc.identifier.uri | http://hdl.handle.net/10251/40327 | |
dc.description.abstract | The high Young’s modulus of titanium with respect to that one of the bone is the main cause of the stress-shielding phenomenon, which promotes bone resorption around implants. Development of implants with a low Young’s modulus has gained increased importance during the last decade, and the manufacturing of porous titanium is one of the routes to reduce this problem. In this work, porous samples of commercially pure titanium grade IV obtained by powder metallurgy with ammonium bicarbonate (NH4HCO3) as space-holder were studied. Evaluations of porosity and mechanical properties were used to determine the influence of compaction pressure for a fixed NH4HCO3 content. Measurements by ultrasound tests gave Young’s modulus results that were low enough to reduce stress shielding, whilst retaining suitable mechanical strength. Biological tests on porous cp Ti showed good adhesion of osteoblasts inside the pores, which is an indicator of potential improvement of osteointegration. | es_ES |
dc.description.sponsorship | This work was supported by the Ministerio de Ciencia y Tecnologia, MICINN (Spain) through the project Ref. MAT2010-20855. Furthermore, the authors want to thank laboratory technicians J. Pinto and M. Sanchez, and the undergraduate student I. Nieto for their assistance in microstructure characterization and mechanical testing. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Materials Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biological testing | es_ES |
dc.subject | Porous titanium | es_ES |
dc.subject | Space-holder technique | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Processing, characterization and biological testing of porous titanium obtained by space-holder technique | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10853-012-6586-9 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-20855/ES/OBTENCION Y CARACTERIZACION DE TITANIO CON POROSIDAD GRADIENTE MEDIANTE TECNICAS PULVIMETALURGICAS NO CONVENCIONALES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Torres, Y.; Rodríguez, J.; Arias, S.; Echeverry, M.; Robledo, S.; Amigó Borrás, V.; Pavón, JJ. (2012). Processing, characterization and biological testing of porous titanium obtained by space-holder technique. Journal of Materials Science. 47(18):6565-6576. https://doi.org/10.1007/s10853-012-6586-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10853-012-6586-9 | es_ES |
dc.description.upvformatpinicio | 6565 | es_ES |
dc.description.upvformatpfin | 6576 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 47 | es_ES |
dc.description.issue | 18 | es_ES |
dc.relation.senia | 236914 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine: materials science, surface science, engineering, biological responses and medical applications. Springer, Berlin | es_ES |
dc.description.references | Van Noort R (1987) J Mater Sci 22(11):3801. doi: 10.1007/BF01133326 | es_ES |
dc.description.references | Willians, David F (2008) Biomaterials 29:294153 | es_ES |
dc.description.references | He G, Liu P, Tan Q (2012) J Mech Behav Biomed Mater 5(1):16 | es_ES |
dc.description.references | Dizlek ME, Guden M, Turkan U, Tasdemirci A (2009) J Mater Sci 44(6):1512. doi: 10.1007/s10853-008-3038-7 | es_ES |
dc.description.references | Tuncer N, Arslan G (2009) J Mater Sci 44(6):1477. doi: 10.1007/s10853-008-3167-z | es_ES |
dc.description.references | Robertson DM, Pierre L, Chahal R (1976) J Biomed Mater Res 10:335 | es_ES |
dc.description.references | Cameron HU, Macnab I, Pilliar RM (1978) Int J Artif Organs 1:104 | es_ES |
dc.description.references | Head WC, Bauk DJ, Emerson RH Jr (1995) Clin Orthop Relat Res 311:85 | es_ES |
dc.description.references | Moyen BJ, Lahey PJ, Weinberg EH, Harris WH (1978) J Bone Joint Surg Am 60A:940 | es_ES |
dc.description.references | Uhthoff HK, Finnegan M (1983) J Bone Joint Surg Br 65-B:66 | es_ES |
dc.description.references | Qazi JI, Marquardt B, Rack HJ (2004) JOM 56:49 | es_ES |
dc.description.references | Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27:1728 | es_ES |
dc.description.references | Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. University Press, Cambridge | es_ES |
dc.description.references | Banhart J (2001) Prog Mater Sci 46:559 | es_ES |
dc.description.references | Parthasarathy J, Starly B, Raman S, Christensen A (2010) J Mech Behav Biomed Mater 3:249 | es_ES |
dc.description.references | Oppenheimer SM, Dunand DC (2009) Mater Sci Eng, A 523:70 | es_ES |
dc.description.references | Chino Y, Dunand DC (2008) Acta Mater 56:105 | es_ES |
dc.description.references | Ryan GE, Pandit AS, Apatsidis DP (2008) Biomaterials 29:3625 | es_ES |
dc.description.references | Krishna BV, Bose B, Bandyopadhyay A (2007) Acta Biomater 3:997 | es_ES |
dc.description.references | An YB, Oh NH, Chun YW, Kim YH, Kim DK, Park JS, Kwon J-J, Choi KO, Eom TG, Byun TH, Kim JY, Reucroft PJ, Kim KJ, Lee WH (2005) Mater Lett 59:2178 | es_ES |
dc.description.references | Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Mater Sci Eng R Rep 63:127 | es_ES |
dc.description.references | Oh IH, Nomura N, Masahashi N, Hanada S (2003) Scr Mater 49:1197 | es_ES |
dc.description.references | Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Scripta Mater 45:1147 | es_ES |
dc.description.references | Li DS, Zhang YP, Ma X, Zhang XP (2009) J Alloy Compd 474:L1 | es_ES |
dc.description.references | Imwinkelried T (2007) Biomed Mater Res A 81:964 | es_ES |
dc.description.references | Kashef S, Asgari A, Hilditch TB, Yan W, Goel VK, Hodgson PD (2010) Mater Sci Eng, A 527:7689 | es_ES |
dc.description.references | Kashef S, Asgari A, Hilditch TB, Yan W, Goel VK, Hodgson PD (2011) Mater Sci Eng, A 528:1602 | es_ES |
dc.description.references | Wenjuan N, Chenguang B, GuiBao Q, Qiang W (2009) Mater Sci Eng, A 506:148 | es_ES |
dc.description.references | Guden M, Celik E, Akar E, Cetiner S (2005) Mater Charact 54:399 | es_ES |
dc.description.references | Bansiddhi A, Dunand DC (2008) Acta Biomater 4:1996 | es_ES |
dc.description.references | Zhao X, Sun H, Lan L, Huang J, Zhang H, Wang Y (2009) Mater Lett 63:2402 | es_ES |
dc.description.references | Li XJ, Wang JQ, Han EH, Ke W (2007) Acta Biomater 3:807 | es_ES |
dc.description.references | Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New York | es_ES |
dc.description.references | Torres Y, Pavón JJ, Nieto I, Rodríguez JA (2011) Metall Mater Trans B 42:891 | es_ES |
dc.description.references | PlivioPore™ (2006) Open-porous, osteoconductive structure for optimized fusion. Synthesis, Technique Guide, pp 1–31 | es_ES |
dc.description.references | Laptev A, Bram M, Buchkremer HP, Stöver D (2004) Powder Metall 47:85 | es_ES |
dc.description.references | Imwinkelried T, Lee PD (2007) Aperture and pore size distribution of titanium foam implants. In: Transactions of the 32nd annual meeting of the society for biomaterials, April 18–21, 2007, Chicago, IL, USA | es_ES |
dc.description.references | Reig L, Amigó V, Busquets D, Calero JA (2011) Powder Metall 54:389 | es_ES |
dc.description.references | Jurczyk MU, Jurczyk K, Miklaszewski A, Jurczyk M (2011) Mater Des 32:4882 | es_ES |
dc.description.references | Müller U, Imwinkelried T, Horst M, Sievers M, Graf-Hausner U (2006) Eur Cells Mater 11:8 | es_ES |
dc.description.references | Simon M, Lagneau C, Moreno J, Lissac M, Dalard F, Grosgogeat B (2005) Eur J Oral Sci 113(6):537 | es_ES |
dc.description.references | Reig L, Amigó V, Busquets D, Salvador MD, Calero JA (2011) Ceram Trans 209:273 | es_ES |
dc.description.references | ASTM F67-00 (2002) Standard specification for unalloyed titanium for surgical implant applications | es_ES |
dc.description.references | Torres Y, Pavón JJ, Rodríguez JA (2012) J Mater Process Technol 212(5):1061 | es_ES |
dc.description.references | ASTM E9-89a (2000) Standard test methods of compression testing of metallic materials at room temperature | es_ES |
dc.description.references | ASTM C373-88 (1999) Standard test method for water absortion bulk density. Apparent porosity and apparent specific gravity of fired whiteware products | es_ES |
dc.description.references | Exner HE, Hougardy HP (1988) Quantitative image analysis. DGM Informationsgesellschaft mbH, Oberursel | es_ES |
dc.description.references | Roebuck R, Almond EA (1988) Int Mater Rev 33:90 | es_ES |
dc.description.references | Metals Handbook (1989) Nondestructive evaluation and quality control, 9th edn. ASM International, OH, p 235 | es_ES |
dc.description.references | Kikuchi M, Takahashi M, Okuno O (2006) Dent Mater 22:641 | es_ES |
dc.description.references | Müllner HW, Fritsch A, Kohlhauser C, Reihsner R, Hellmich C, Godlinski D, Rota A, Slesinski R, Eberhardsteiner J (2008) Strain 44:153 | es_ES |
dc.description.references | Denizot F, Lang R (1986) J Immunol Methods 89:271 | es_ES |
dc.description.references | Echeverry M (2011) Evaluación de la oseointegración mediante ensayos biológicos de Ti c.p. y Ti6Al4V anodizados. Universidad de Antioquia, Facultad de Biología. MSc. Thesis | es_ES |
dc.description.references | Thümmler F, Thomma W (1969) Metall Rev 115:69 | es_ES |
dc.description.references | Thümmler F, Oberacker R (1993) Introduction to powder metallurgy. The Institute of Materials, London, p 181 | es_ES |
dc.description.references | Greiner C, Oppenheimer SM, Dunand DC (2005) Acta Biomater 1:705 | es_ES |
dc.description.references | Nielsen LF (1984) J Am Ceram Soc 67(2):93 | es_ES |
dc.description.references | Black J, Hastings G (eds) Handbook of biomaterials properties. Chapman and Hall, London | es_ES |
dc.description.references | Dorozhkin SV (2009) Materials 2009(2):399 | es_ES |
dc.description.references | Itala AI, Ylanen HO, Ekholm C, Karlsson KH, Aro HT (2001) J Biomed Mater Res 58:679 | es_ES |
dc.description.references | Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP (2003) J Mater Sci - Mater Med 14(3):201 | es_ES |
dc.description.references | Singh R, Lee PD, Lindley TC, Dashwood RJ, Ferrie E, Imwinkelried T (2009) Acta Biomater 5:477 | es_ES |
dc.description.references | Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Dent Mater 24(11):1525 | es_ES |
dc.description.references | Lee WH, Hyun CY (2007) J Mater Process Technol 189(1–3):219 | es_ES |
dc.description.references | Boccaccini AR, Maquet V (2003) Compos Sci Technol 63(16):2417 | es_ES |
dc.description.references | Boyan BD, Schwartz Z (1999) Modulation of osteogenesis via implant surface design. In: Davies JE (ed) Bone engineering. Em2 Inc, Toronto, p 232 | es_ES |
dc.description.references | Aparicio Bádenas C, Gil FX (2005) Tratamientos de superficie sobre titanio comercialmente puro para la mejora de la osteointegración de los implantes dentales. In: Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metallúrgica. http://hdl.handle.net/10803/6044 . Accessed 15 April 2005 | es_ES |