- -

Processing, characterization and biological testing of porous titanium obtained by space-holder technique

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Processing, characterization and biological testing of porous titanium obtained by space-holder technique

Show simple item record

Files in this item

dc.contributor.author Torres, Y. es_ES
dc.contributor.author Rodríguez, J.A. es_ES
dc.contributor.author Arias, S. es_ES
dc.contributor.author Echeverry, M. es_ES
dc.contributor.author Robledo, S. es_ES
dc.contributor.author Amigó Borrás, Vicente es_ES
dc.contributor.author Pavón, J. J. es_ES
dc.date.accessioned 2014-09-26T13:48:02Z
dc.date.available 2014-09-26T13:48:02Z
dc.date.issued 2012-09
dc.identifier.issn 0022-2461
dc.identifier.uri http://hdl.handle.net/10251/40327
dc.description.abstract The high Young’s modulus of titanium with respect to that one of the bone is the main cause of the stress-shielding phenomenon, which promotes bone resorption around implants. Development of implants with a low Young’s modulus has gained increased importance during the last decade, and the manufacturing of porous titanium is one of the routes to reduce this problem. In this work, porous samples of commercially pure titanium grade IV obtained by powder metallurgy with ammonium bicarbonate (NH4HCO3) as space-holder were studied. Evaluations of porosity and mechanical properties were used to determine the influence of compaction pressure for a fixed NH4HCO3 content. Measurements by ultrasound tests gave Young’s modulus results that were low enough to reduce stress shielding, whilst retaining suitable mechanical strength. Biological tests on porous cp Ti showed good adhesion of osteoblasts inside the pores, which is an indicator of potential improvement of osteointegration. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Ciencia y Tecnologia, MICINN (Spain) through the project Ref. MAT2010-20855. Furthermore, the authors want to thank laboratory technicians J. Pinto and M. Sanchez, and the undergraduate student I. Nieto for their assistance in microstructure characterization and mechanical testing. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation info:eu-repo/grantAgreement/MICINN//MAT2010-20855/ES/OBTENCION Y CARACTERIZACION DE TITANIO CON POROSIDAD GRADIENTE MEDIANTE TECNICAS PULVIMETALURGICAS NO CONVENCIONALES/ es_ES
dc.relation.ispartof Journal of Materials Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biological testing es_ES
dc.subject Porous titanium es_ES
dc.subject Space-holder technique es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Processing, characterization and biological testing of porous titanium obtained by space-holder technique es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10853-012-6586-9
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Torres, Y.; Rodríguez, J.; Arias, S.; Echeverry, M.; Robledo, S.; Amigó Borrás, V.; Pavón, JJ. (2012). Processing, characterization and biological testing of porous titanium obtained by space-holder technique. Journal of Materials Science. 47(18):6565-6576. https://doi.org/10.1007/s10853-012-6586-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10853-012-6586-9 es_ES
dc.description.upvformatpinicio 6565 es_ES
dc.description.upvformatpfin 6576 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 18 es_ES
dc.relation.senia 236914
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine: materials science, surface science, engineering, biological responses and medical applications. Springer, Berlin es_ES
dc.description.references Van Noort R (1987) J Mater Sci 22(11):3801. doi: 10.1007/BF01133326 es_ES
dc.description.references Willians, David F (2008) Biomaterials 29:294153 es_ES
dc.description.references He G, Liu P, Tan Q (2012) J Mech Behav Biomed Mater 5(1):16 es_ES
dc.description.references Dizlek ME, Guden M, Turkan U, Tasdemirci A (2009) J Mater Sci 44(6):1512. doi: 10.1007/s10853-008-3038-7 es_ES
dc.description.references Tuncer N, Arslan G (2009) J Mater Sci 44(6):1477. doi: 10.1007/s10853-008-3167-z es_ES
dc.description.references Robertson DM, Pierre L, Chahal R (1976) J Biomed Mater Res 10:335 es_ES
dc.description.references Cameron HU, Macnab I, Pilliar RM (1978) Int J Artif Organs 1:104 es_ES
dc.description.references Head WC, Bauk DJ, Emerson RH Jr (1995) Clin Orthop Relat Res 311:85 es_ES
dc.description.references Moyen BJ, Lahey PJ, Weinberg EH, Harris WH (1978) J Bone Joint Surg Am 60A:940 es_ES
dc.description.references Uhthoff HK, Finnegan M (1983) J Bone Joint Surg Br 65-B:66 es_ES
dc.description.references Qazi JI, Marquardt B, Rack HJ (2004) JOM 56:49 es_ES
dc.description.references Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27:1728 es_ES
dc.description.references Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. University Press, Cambridge es_ES
dc.description.references Banhart J (2001) Prog Mater Sci 46:559 es_ES
dc.description.references Parthasarathy J, Starly B, Raman S, Christensen A (2010) J Mech Behav Biomed Mater 3:249 es_ES
dc.description.references Oppenheimer SM, Dunand DC (2009) Mater Sci Eng, A 523:70 es_ES
dc.description.references Chino Y, Dunand DC (2008) Acta Mater 56:105 es_ES
dc.description.references Ryan GE, Pandit AS, Apatsidis DP (2008) Biomaterials 29:3625 es_ES
dc.description.references Krishna BV, Bose B, Bandyopadhyay A (2007) Acta Biomater 3:997 es_ES
dc.description.references An YB, Oh NH, Chun YW, Kim YH, Kim DK, Park JS, Kwon J-J, Choi KO, Eom TG, Byun TH, Kim JY, Reucroft PJ, Kim KJ, Lee WH (2005) Mater Lett 59:2178 es_ES
dc.description.references Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Mater Sci Eng R Rep 63:127 es_ES
dc.description.references Oh IH, Nomura N, Masahashi N, Hanada S (2003) Scr Mater 49:1197 es_ES
dc.description.references Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Scripta Mater 45:1147 es_ES
dc.description.references Li DS, Zhang YP, Ma X, Zhang XP (2009) J Alloy Compd 474:L1 es_ES
dc.description.references Imwinkelried T (2007) Biomed Mater Res A 81:964 es_ES
dc.description.references Kashef S, Asgari A, Hilditch TB, Yan W, Goel VK, Hodgson PD (2010) Mater Sci Eng, A 527:7689 es_ES
dc.description.references Kashef S, Asgari A, Hilditch TB, Yan W, Goel VK, Hodgson PD (2011) Mater Sci Eng, A 528:1602 es_ES
dc.description.references Wenjuan N, Chenguang B, GuiBao Q, Qiang W (2009) Mater Sci Eng, A 506:148 es_ES
dc.description.references Guden M, Celik E, Akar E, Cetiner S (2005) Mater Charact 54:399 es_ES
dc.description.references Bansiddhi A, Dunand DC (2008) Acta Biomater 4:1996 es_ES
dc.description.references Zhao X, Sun H, Lan L, Huang J, Zhang H, Wang Y (2009) Mater Lett 63:2402 es_ES
dc.description.references Li XJ, Wang JQ, Han EH, Ke W (2007) Acta Biomater 3:807 es_ES
dc.description.references Patnaik P (2003) Handbook of inorganic chemicals. McGraw-Hill, New York es_ES
dc.description.references Torres Y, Pavón JJ, Nieto I, Rodríguez JA (2011) Metall Mater Trans B 42:891 es_ES
dc.description.references PlivioPore™ (2006) Open-porous, osteoconductive structure for optimized fusion. Synthesis, Technique Guide, pp 1–31 es_ES
dc.description.references Laptev A, Bram M, Buchkremer HP, Stöver D (2004) Powder Metall 47:85 es_ES
dc.description.references Imwinkelried T, Lee PD (2007) Aperture and pore size distribution of titanium foam implants. In: Transactions of the 32nd annual meeting of the society for biomaterials, April 18–21, 2007, Chicago, IL, USA es_ES
dc.description.references Reig L, Amigó V, Busquets D, Calero JA (2011) Powder Metall 54:389 es_ES
dc.description.references Jurczyk MU, Jurczyk K, Miklaszewski A, Jurczyk M (2011) Mater Des 32:4882 es_ES
dc.description.references Müller U, Imwinkelried T, Horst M, Sievers M, Graf-Hausner U (2006) Eur Cells Mater 11:8 es_ES
dc.description.references Simon M, Lagneau C, Moreno J, Lissac M, Dalard F, Grosgogeat B (2005) Eur J Oral Sci 113(6):537 es_ES
dc.description.references Reig L, Amigó V, Busquets D, Salvador MD, Calero JA (2011) Ceram Trans 209:273 es_ES
dc.description.references ASTM F67-00 (2002) Standard specification for unalloyed titanium for surgical implant applications es_ES
dc.description.references Torres Y, Pavón JJ, Rodríguez JA (2012) J Mater Process Technol 212(5):1061 es_ES
dc.description.references ASTM E9-89a (2000) Standard test methods of compression testing of metallic materials at room temperature es_ES
dc.description.references ASTM C373-88 (1999) Standard test method for water absortion bulk density. Apparent porosity and apparent specific gravity of fired whiteware products es_ES
dc.description.references Exner HE, Hougardy HP (1988) Quantitative image analysis. DGM Informationsgesellschaft mbH, Oberursel es_ES
dc.description.references Roebuck R, Almond EA (1988) Int Mater Rev 33:90 es_ES
dc.description.references Metals Handbook (1989) Nondestructive evaluation and quality control, 9th edn. ASM International, OH, p 235 es_ES
dc.description.references Kikuchi M, Takahashi M, Okuno O (2006) Dent Mater 22:641 es_ES
dc.description.references Müllner HW, Fritsch A, Kohlhauser C, Reihsner R, Hellmich C, Godlinski D, Rota A, Slesinski R, Eberhardsteiner J (2008) Strain 44:153 es_ES
dc.description.references Denizot F, Lang R (1986) J Immunol Methods 89:271 es_ES
dc.description.references Echeverry M (2011) Evaluación de la oseointegración mediante ensayos biológicos de Ti c.p. y Ti6Al4V anodizados. Universidad de Antioquia, Facultad de Biología. MSc. Thesis es_ES
dc.description.references Thümmler F, Thomma W (1969) Metall Rev 115:69 es_ES
dc.description.references Thümmler F, Oberacker R (1993) Introduction to powder metallurgy. The Institute of Materials, London, p 181 es_ES
dc.description.references Greiner C, Oppenheimer SM, Dunand DC (2005) Acta Biomater 1:705 es_ES
dc.description.references Nielsen LF (1984) J Am Ceram Soc 67(2):93 es_ES
dc.description.references Black J, Hastings G (eds) Handbook of biomaterials properties. Chapman and Hall, London es_ES
dc.description.references Dorozhkin SV (2009) Materials 2009(2):399 es_ES
dc.description.references Itala AI, Ylanen HO, Ekholm C, Karlsson KH, Aro HT (2001) J Biomed Mater Res 58:679 es_ES
dc.description.references Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP (2003) J Mater Sci - Mater Med 14(3):201 es_ES
dc.description.references Singh R, Lee PD, Lindley TC, Dashwood RJ, Ferrie E, Imwinkelried T (2009) Acta Biomater 5:477 es_ES
dc.description.references Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Dent Mater 24(11):1525 es_ES
dc.description.references Lee WH, Hyun CY (2007) J Mater Process Technol 189(1–3):219 es_ES
dc.description.references Boccaccini AR, Maquet V (2003) Compos Sci Technol 63(16):2417 es_ES
dc.description.references Boyan BD, Schwartz Z (1999) Modulation of osteogenesis via implant surface design. In: Davies JE (ed) Bone engineering. Em2 Inc, Toronto, p 232 es_ES
dc.description.references Aparicio Bádenas C, Gil FX (2005) Tratamientos de superficie sobre titanio comercialmente puro para la mejora de la osteointegración de los implantes dentales. In: Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metallúrgica. http://hdl.handle.net/10803/6044 . Accessed 15 April 2005 es_ES


This item appears in the following Collection(s)

Show simple item record