- -

On improving robustness of LDA and SRDA by using tangent vectors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On improving robustness of LDA and SRDA by using tangent vectors

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Villegas Santamaría, Mauricio es_ES
dc.contributor.author Paredes Palacios, Roberto es_ES
dc.date.accessioned 2014-09-26T18:02:12Z
dc.date.available 2014-09-26T18:02:12Z
dc.date.issued 2013-07
dc.identifier.issn 0167-8655
dc.identifier.uri http://hdl.handle.net/10251/40332
dc.description This is the author’s version of a work that was accepted for publication in Pattern Recognition Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters, [Volume 34, Issue 9, 1 July 2013, Pages 1094–1100] DOI: 10.1016/j.patrec.2013.03.001 es_ES
dc.description.abstract [EN] In the area of pattern recognition, it is common for few training samples to be available with respect to the dimensionality of the representation space; this is known as the curse of dimensionality. This problem can be alleviated by using a dimensionality reduction approach, which overcomes the curse relatively well. Moreover, supervised dimensionality reduction techniques generally provide better recognition performance; however, several of these tend to suffer from the curse when applied directly to high-dimensional spaces. We propose to overcome this problem by incorporating additional information to supervised subspace learning techniques using what is known as tangent vectors. This additional information accounts for the possible differences that the sample data can suffer. In fact, this can be seen as a way to model the unseen data and make better use of the scarce training samples. In this paper, methods for incorporating tangent vector information are described for one classical technique (LDA) and one state-of-the-art technique (SRDA). Experimental results confirm that this additional information improves performance and robustness to known transformations. es_ES
dc.description.sponsorship Work partially supported through the EU 7th Framework Programme grant tranScriptorium (Ref: 600707), by the Spanish MEC under the STraDA research project (TIN2012-37475-C02-01) and by the Generalitat Valenciana under grant Prometeo/2009/014. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Pattern Recognition Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Subspace learning es_ES
dc.subject Dimensionality reduction es_ES
dc.subject Tangent vectors es_ES
dc.subject LDA es_ES
dc.subject SRDA es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title On improving robustness of LDA and SRDA by using tangent vectors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.patrec.2013.03.001
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/600707/EU/tranScriptorium/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-37475-C02-01/ES/SEARCH IN TRANSCRIBED MANUSCRIPTS AND DOCUMENT AUGMENTATION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Villegas Santamaría, M.; Paredes Palacios, R. (2013). On improving robustness of LDA and SRDA by using tangent vectors. Pattern Recognition Letters. 34(9):1094-1100. https://doi.org/10.1016/j.patrec.2013.03.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.patrec.2013.03.001 es_ES
dc.description.upvformatpinicio 1094 es_ES
dc.description.upvformatpfin 1100 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 239586
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem