- -

A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guardiola, Carlos es_ES
dc.contributor.author Plá Moreno, Benjamín es_ES
dc.contributor.author Blanco-Rodriguez, David es_ES
dc.contributor.author Eriksson, L. es_ES
dc.date.accessioned 2014-09-29T08:29:02Z
dc.date.issued 2013-11
dc.identifier.issn 0967-0661
dc.identifier.uri http://hdl.handle.net/10251/40391
dc.description.abstract No-x estimation in diesel engines is an up-to-date problem but still some issues need to be solved. Raw sensor signals are not fast enough for real-time use while control-oriented models suffer from drift and aging. A control-oriented gray box model based on engine maps and calibrated off-line is used as benchmark model for No-x estimation. Calibration effort is important and engine data-dependent. This motivates the use of adaptive look-up tables. In addition to, look-up tables are often used in automotive control systems and there is a need for systematic methods that can estimate or update them on-line. For that purpose, Kalman filter (KF) based methods are explored as having the interesting property of tracking estimation error in a covariance matrix. Nevertheless, when coping with large systems, the computational burden is high, in terms of time and memory, compromising its implementation in commercial electronic control units. However look-up table estimation has a structure, that is here exploited to develop a memory and computationally efficient approximation to the KF, named Simplified Kalman filter (SKF). Convergence and robustness is evaluated in simulation and compared to both a full KF and a minimal steady-state version, that neglects the variance information. SKF is used for the online calibration of an adaptive model for No-x estimation in dynamic engine cycles. Prediction results are compared with the ones of the benchmark model and of the other methods. Furthermore, actual online estimation of No-x is solved by means of the proposed adaptive structure. Results on dynamic tests with a diesel engine and the computational study demonstrate the feasibility and capabilities of the method for an implementation in engine control units. (C) 2013 Elsevier Ltd. All rights reserved. es_ES
dc.language Inglés es_ES
dc.publisher International Federation of Automatic Control (IFAC) es_ES
dc.relation.ispartof Control Engineering Practice es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject NOx es_ES
dc.subject Kalman filter es_ES
dc.subject Adaptive model es_ES
dc.subject Look-up tables es_ES
dc.subject Diesel es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.conengprac.2013.06.015
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Guardiola, C.; Pla Moreno, B.; Blanco-Rodriguez, D.; Eriksson, L. (2013). A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines. Control Engineering Practice. 21(11):1455-1468. doi:10.1016/j.conengprac.2013.06.015 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.conengprac.2013.06.015 es_ES
dc.description.upvformatpinicio 1455 es_ES
dc.description.upvformatpfin 1468 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 252164


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem