Mostrar el registro sencillo del ítem
dc.contributor.author | Guardiola, Carlos | es_ES |
dc.contributor.author | Plá Moreno, Benjamín | es_ES |
dc.contributor.author | Blanco-Rodriguez, David | es_ES |
dc.contributor.author | Eriksson, L. | es_ES |
dc.date.accessioned | 2014-09-29T08:29:02Z | |
dc.date.issued | 2013-11 | |
dc.identifier.issn | 0967-0661 | |
dc.identifier.uri | http://hdl.handle.net/10251/40391 | |
dc.description.abstract | No-x estimation in diesel engines is an up-to-date problem but still some issues need to be solved. Raw sensor signals are not fast enough for real-time use while control-oriented models suffer from drift and aging. A control-oriented gray box model based on engine maps and calibrated off-line is used as benchmark model for No-x estimation. Calibration effort is important and engine data-dependent. This motivates the use of adaptive look-up tables. In addition to, look-up tables are often used in automotive control systems and there is a need for systematic methods that can estimate or update them on-line. For that purpose, Kalman filter (KF) based methods are explored as having the interesting property of tracking estimation error in a covariance matrix. Nevertheless, when coping with large systems, the computational burden is high, in terms of time and memory, compromising its implementation in commercial electronic control units. However look-up table estimation has a structure, that is here exploited to develop a memory and computationally efficient approximation to the KF, named Simplified Kalman filter (SKF). Convergence and robustness is evaluated in simulation and compared to both a full KF and a minimal steady-state version, that neglects the variance information. SKF is used for the online calibration of an adaptive model for No-x estimation in dynamic engine cycles. Prediction results are compared with the ones of the benchmark model and of the other methods. Furthermore, actual online estimation of No-x is solved by means of the proposed adaptive structure. Results on dynamic tests with a diesel engine and the computational study demonstrate the feasibility and capabilities of the method for an implementation in engine control units. (C) 2013 Elsevier Ltd. All rights reserved. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | International Federation of Automatic Control (IFAC) | es_ES |
dc.relation.ispartof | Control Engineering Practice | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | NOx | es_ES |
dc.subject | Kalman filter | es_ES |
dc.subject | Adaptive model | es_ES |
dc.subject | Look-up tables | es_ES |
dc.subject | Diesel | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1016/j.conengprac.2013.06.015 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Guardiola, C.; Pla Moreno, B.; Blanco-Rodriguez, D.; Eriksson, L. (2013). A computationally efficient Kalman filter based estimator for updating look-up tables applied to NOx estimation in diesel engines. Control Engineering Practice. 21(11):1455-1468. doi:10.1016/j.conengprac.2013.06.015 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.conengprac.2013.06.015 | es_ES |
dc.description.upvformatpinicio | 1455 | es_ES |
dc.description.upvformatpfin | 1468 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 252164 |