- -

Mean ergodic operators and reflexive Fréchet lattices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mean ergodic operators and reflexive Fréchet lattices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bonet Solves, José Antonio es_ES
dc.contributor.author de Pagter, Ben es_ES
dc.contributor.author Ricker, Werner Joseph es_ES
dc.date.accessioned 2014-09-29T11:10:59Z
dc.date.available 2014-09-29T11:10:59Z
dc.date.issued 2011-09-26T11:10:59Z
dc.identifier.issn 0308-2105
dc.identifier.uri http://hdl.handle.net/10251/40399
dc.description.abstract Connections between (positive) mean ergodic operators acting in Banach lattices and properties of the underlying lattice itself are well understood (see the works of Emel'yanov, Wolff and Zaharopol). For Frechet lattices (or more general locally convex solid Riesz spaces) there is virtually no information available. For a Frechet lattice E, it is shown here that (amongst other things) every power-bounded linear operator on E is mean ergodic if and only if E is reflexive if and only if E. is Dedekind sigma-complete and every positive power-bounded operator on E is mean ergodic if and only if every positive power-bounded operator in the strong dual E'(beta) (no longer a Frechet lattice) is mean ergodic. An important technique is to develop criteria that detect when E admits a (positively) complemented lattice copy of c(0) l(1) or l(infinity). © Copyright © Royal Society of Edinburgh 2011. es_ES
dc.description.sponsorship J.B. was partly supported by MEC and FEDER Project MTM 2007-62643, GV Project Prometeo 2008/101 and the net MTM 2007-30904-E (Spain). B.D.P. gratefully acknowledges the support of the Alexander von Humboldt Foundation.
dc.language Inglés es_ES
dc.relation.ispartof Proceedings of the Royal Society of Edinburgh: Section A Mathematics
dc.rights Reserva de todos los derechos es_ES
dc.subject Fréchet spaces es_ES
dc.subject Mean ergodic operators es_ES
dc.subject Banach lattices es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Mean ergodic operators and reflexive Fréchet lattices es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1017/S0308210510000314
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MTM2007-62643/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS COMPLEJO Y LAS ECUACIONES EN DERIVADAS PARCIALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MTM2007-30904-E/ES/VARIABLE COMPLEJA, ESPACIOS DE FUNCIONES Y OPERADORES ENTRE ELLOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bonet Solves, JA.; De Pagter, B.; Ricker, WJ. (2011). Mean ergodic operators and reflexive Fréchet lattices. https://doi.org/10.1017/S0308210510000314 es_ES
dc.description.accrualMethod S es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 210849
dc.identifier.eissn 1473-7124
dc.contributor.funder Ministerio de Educación y Ciencia
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Alexander von Humboldt Foundation


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem