Mostrar el registro sencillo del ítem
dc.contributor.author | Rivera Ortun, María José | es_ES |
dc.contributor.author | Trujillo Guillen, Macarena | es_ES |
dc.contributor.author | Romero García, Vicente | es_ES |
dc.contributor.author | López Molina, Juan Antonio | es_ES |
dc.contributor.author | Berjano Zanón, Enrique | es_ES |
dc.date.accessioned | 2014-10-02T14:29:08Z | |
dc.date.available | 2014-10-02T14:29:08Z | |
dc.date.issued | 2013-08 | |
dc.identifier.issn | 0735-1933 | |
dc.identifier.uri | http://hdl.handle.net/10251/40600 | |
dc.description.abstract | The hyperbolic bioheat equation (HBE) has been used to model heating applications involving very short power pulses. This equation includes two mathematical distributions (Heaviside and Delta) which have to be necessarily substituted for smoothed mathematical functions when the HBE is solved by numerical methods. This study focuses on which type of smoothed functions would be suitable for this purpose, i.e. those which would provide solutions similar to those obtained analytically from the original Heaviside and Delta distributions. The logistic function was considered as a substitute for the Heaviside function, while its derivative and the probabilistic Gaussian function were considered as substitutes for the Delta distribution. We also considered polynomial interpolation functions, in particular, the families of smoothed functions with continuous second derivative without overshoot used by COMSOL Multiphysics. All the smoothed functions were used to solve the HBE by the Finite Element Method (COMSOL Multiphysics), and the solutions were compared to those obtained analytically from the original Heaviside and Delta distributions. The results showed that only the COMSOL smoothed functions provide a numerical solution almost identical to the analytical one. Finally, we demonstrated mathematically that in order to find a suitable smoothed function (f) that must adequately substitute any mathematical distribution (D) in the HBE, the difference D - f must have compact support. (c) 2013 Elsevier Ltd. All rights reserved. | es_ES |
dc.description.sponsorship | This work received financial support from the Spanish "Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion" Grant No. TEC2011-27133-C02-01 and from Universitat Politenica de Valencia (PAID-06-11 Ref. 1988). V. Romero Garcia is grateful for the support of "Programa de Contratos Post-Doctorales con Movilidad UPV del Campus de Excelencia (CEI-01-11)" and FEDER Project MAT2009-09438. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | International Communications in Heat and Mass Transfer | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Wave heat | es_ES |
dc.subject | Non-Fourier heat | es_ES |
dc.subject | Hyperbolic bioheat equation | es_ES |
dc.subject | Heaviside distribution | es_ES |
dc.subject | Numerical method | es_ES |
dc.subject | Dirac distribution | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Numerical resolution of the hyperbolic heat equation using smoothed mathematical functions instead of Heaviside and Dirac delta distributions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.icheatmasstransfer.2013.05.017 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//CEI-01-11/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-1988/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Rivera Ortun, MJ.; Trujillo Guillen, M.; Romero García, V.; López Molina, JA.; Berjano Zanón, E. (2013). Numerical resolution of the hyperbolic heat equation using smoothed mathematical functions instead of Heaviside and Dirac delta distributions. International Communications in Heat and Mass Transfer. 46:7-12. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.017 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.05.017 | es_ES |
dc.description.upvformatpinicio | 7 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 46 | es_ES |
dc.relation.senia | 255650 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |