- -

Numerical resolution of the hyperbolic heat equation using smoothed mathematical functions instead of Heaviside and Dirac delta distributions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical resolution of the hyperbolic heat equation using smoothed mathematical functions instead of Heaviside and Dirac delta distributions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rivera Ortun, María José es_ES
dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author López Molina, Juan Antonio es_ES
dc.contributor.author Berjano Zanón, Enrique es_ES
dc.date.accessioned 2014-10-02T14:29:08Z
dc.date.available 2014-10-02T14:29:08Z
dc.date.issued 2013-08
dc.identifier.issn 0735-1933
dc.identifier.uri http://hdl.handle.net/10251/40600
dc.description.abstract The hyperbolic bioheat equation (HBE) has been used to model heating applications involving very short power pulses. This equation includes two mathematical distributions (Heaviside and Delta) which have to be necessarily substituted for smoothed mathematical functions when the HBE is solved by numerical methods. This study focuses on which type of smoothed functions would be suitable for this purpose, i.e. those which would provide solutions similar to those obtained analytically from the original Heaviside and Delta distributions. The logistic function was considered as a substitute for the Heaviside function, while its derivative and the probabilistic Gaussian function were considered as substitutes for the Delta distribution. We also considered polynomial interpolation functions, in particular, the families of smoothed functions with continuous second derivative without overshoot used by COMSOL Multiphysics. All the smoothed functions were used to solve the HBE by the Finite Element Method (COMSOL Multiphysics), and the solutions were compared to those obtained analytically from the original Heaviside and Delta distributions. The results showed that only the COMSOL smoothed functions provide a numerical solution almost identical to the analytical one. Finally, we demonstrated mathematically that in order to find a suitable smoothed function (f) that must adequately substitute any mathematical distribution (D) in the HBE, the difference D - f must have compact support. (c) 2013 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work received financial support from the Spanish "Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion" Grant No. TEC2011-27133-C02-01 and from Universitat Politenica de Valencia (PAID-06-11 Ref. 1988). V. Romero Garcia is grateful for the support of "Programa de Contratos Post-Doctorales con Movilidad UPV del Campus de Excelencia (CEI-01-11)" and FEDER Project MAT2009-09438. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof International Communications in Heat and Mass Transfer es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Wave heat es_ES
dc.subject Non-Fourier heat es_ES
dc.subject Hyperbolic bioheat equation es_ES
dc.subject Heaviside distribution es_ES
dc.subject Numerical method es_ES
dc.subject Dirac distribution es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Numerical resolution of the hyperbolic heat equation using smoothed mathematical functions instead of Heaviside and Dirac delta distributions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.icheatmasstransfer.2013.05.017
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//CEI-01-11/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-1988/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-09438/ES/Optimizacion, Diseño Y Desarrollo Tecnologico De Dispositivos Basados En Cristales De Sonido Para Aplicaciones Medicas Y Medioambientales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Rivera Ortun, MJ.; Trujillo Guillen, M.; Romero García, V.; López Molina, JA.; Berjano Zanón, E. (2013). Numerical resolution of the hyperbolic heat equation using smoothed mathematical functions instead of Heaviside and Dirac delta distributions. International Communications in Heat and Mass Transfer. 46:7-12. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.icheatmasstransfer.2013.05.017 es_ES
dc.description.upvformatpinicio 7 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 46 es_ES
dc.relation.senia 255650
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem