- -

Hypercyclic composition operators on spaces of real analytic functions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Hypercyclic composition operators on spaces of real analytic functions

Show full item record

Bonet Solves, JA.; Domański, P. (2012). Hypercyclic composition operators on spaces of real analytic functions. Mathematical Proceedings of the Cambridge Philosophical Society. 153(3):489-503. https://doi.org/10.1017/S0305004112000266

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/40660

Files in this item

Item Metadata

Title: Hypercyclic composition operators on spaces of real analytic functions
Author: Bonet Solves, José Antonio Domański, Paweł
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
We study the dynamical behaviour of composition operators C φ defined on spaces A(Ω) of real analytic functions on an open subset Ω of ℝ d. We characterize when such operators are topologically transitive, i.e. when for ...[+]
Subjects: Composition operarators , Hypercyclic operators , Spaces of real analytic functions
Copyrigths: Reserva de todos los derechos
Source:
Mathematical Proceedings of the Cambridge Philosophical Society. (issn: 0305-0041 ) (eissn: 1469-8064 )
DOI: 10.1017/S0305004112000266
Publisher:
Cambridge University Press
Publisher version: http://dx.doi.org/10.1017/S0305004112000266
Project ID:
info:eu-repo/grantAgreement/NCN//N N201 605340/
Description: The full article appears in Mathematical Proceedings of the Cambridge Philosophical Society. Volume 153, Issue 3 (2012) Pages 489-503 published by Cambridge University Press. Available at: http://dx.doi.org/10.1017/S0305004112000266
Thanks:
Supported by National Center of Science, Poland, grant no. NN201 605340.
Type: Artículo

References

Kobayashi, S. (1998). Hyperbolic Complex Spaces. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-662-03582-5

S. Zaj c. Hypercyclicity of composition operators in domains of holomorphy, preprint (2012).

Contreras, M. D., Díaz-Madrigal, S., & Pommerenke, C. (2007). Some remarks on the Abel equation in the unit disk. Journal of the London Mathematical Society, 75(3), 623-634. doi:10.1112/jlms/jdm013 [+]
Kobayashi, S. (1998). Hyperbolic Complex Spaces. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-662-03582-5

S. Zaj c. Hypercyclicity of composition operators in domains of holomorphy, preprint (2012).

Contreras, M. D., Díaz-Madrigal, S., & Pommerenke, C. (2007). Some remarks on the Abel equation in the unit disk. Journal of the London Mathematical Society, 75(3), 623-634. doi:10.1112/jlms/jdm013

Domański, P., & Langenbruch, M. (2005). Coherent analytic sets and composition of real analytic functions. Journal für die reine und angewandte Mathematik (Crelles Journal), 2005(582), 41-59. doi:10.1515/crll.2005.2005.582.41

Cowen, C. C., & Ko, E. (2010). Hermitian weighted composition operators on $H^{2}$. Transactions of the American Mathematical Society, 362(11), 5771-5771. doi:10.1090/s0002-9947-2010-05043-3

Bernal-González, L. (2005). Universal entire functions for affine endomorphisms of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msup><mml:mi mathvariant=«double-struck»>C</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math>. Journal of Mathematical Analysis and Applications, 305(2), 690-697. doi:10.1016/j.jmaa.2004.12.031

Domański, P. (2012). Notes on Real Analytic Functions and Classical Operators. Topics in Complex Analysis and Operator Theory, 3-47. doi:10.1090/conm/561/11108

M. D. Contreras Iteración de funciones analíticas en el disco unidad. Preprint (Universidad de Sevilla, 2009).

S. Shkarin Existence theorems in linear chaos. arXiv:0810.1192v2.

Bonet, J., & Peris, A. (1998). Hypercyclic Operators on Non-normable Fréchet Spaces. Journal of Functional Analysis, 159(2), 587-595. doi:10.1006/jfan.1998.3315

Bonet, J., & Domański, P. (2010). Power bounded composition operators on spaces of analytic functions. Collectanea mathematica, 62(1), 69-83. doi:10.1007/s13348-010-0005-9

Guaraldo, F., Macrì, P., & Tancredi, A. (1986). Topics on Real Analytic Spaces. Advanced Lectures in Mathematics. doi:10.1007/978-3-322-84243-5

Grosse-Erdmann, K.-G., & Mortini, R. (2009). Universal functions for composition operators with non-automorphic symbol. Journal d’Analyse Mathématique, 107(1), 355-376. doi:10.1007/s11854-009-0013-4

Bayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113

Gonzalez, L. B., & Rodriguez, A. M. (1995). Non-Finite Dimensional Closed Vector Spaces of Universal Functions for Composition Operators. Journal of Approximation Theory, 82(3), 375-391. doi:10.1006/jath.1995.1086

Grosse-Erdmann, K.-G. (1999). Universal families and hypercyclic operators. Bulletin of the American Mathematical Society, 36(03), 345-382. doi:10.1090/s0273-0979-99-00788-0

Domański, P., Goliński, M., & Langenbruch, M. (2012). A note on composition operators on spaces of real analytic functions. Annales Polonici Mathematici, 103(2), 209-216. doi:10.4064/ap103-2-8

Domański, P., & Vogt, D. (2000). The space of real-analytic functions has no basis. Studia Mathematica, 142(2), 187-200. doi:10.4064/sm-142-2-187-200

Shapiro, J. H. (1993). Composition Operators and Classical Function Theory. doi:10.1007/978-1-4612-0887-7

Vogt, D. (2010). Section spaces of real analytic vector bundles and a theorem of Grothendieck and Poly. Linear and Non-Linear Theory of Generalized Functions and its Applications. doi:10.4064/bc88-0-25

Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1

J. H. Shapiro Notes on the dynamics of linear operators, Lecture notes, http://www.mth.msu.edu/~shapiro/Pubvit/Downloads/LinDynamics/LynDynamics.html

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record