Mostrar el registro sencillo del ítem
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Jerez-Rozo, JI | es_ES |
dc.contributor.author | Romanach, RJ | es_ES |
dc.contributor.author | Ferrer Riquelme, Alberto José | es_ES |
dc.date.accessioned | 2014-10-06T12:03:47Z | |
dc.date.available | 2014-10-06T12:03:47Z | |
dc.date.issued | 2012-08 | |
dc.identifier.issn | 0169-7439 | |
dc.identifier.uri | http://hdl.handle.net/10251/40663 | |
dc.description.abstract | [EN] This paper presents a three step methodology based on the use of chemical oriented models (MCR and CLS) for extracting out the chemical distribution maps (CDMs) from hyperspectral images, afterwards performing multivariate image analysis (MIA) on the CDMs, and !nally extracting 'channel' and textural features from the score images related to quality characteristics These features show complementary properties to those directly obtained from the CDMs, since they take advantage of their internal correlation structure. The approach has been successfully applied to the evaluation of homogeneity and cluster presence of API in a novel formulation developed to improve the dissolution of poorly soluble drugs. © 2012 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grant DPI2011-28112-C04-02, and also by NSF-Engineering Research Center for Structured Organic Particulate Systems (ERC-SOPS, EEC-0540855) and the program NSF-Major Research Instrumentation grant 0821113. | |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Solubility | es_ES |
dc.subject | Hyperspectral images | es_ES |
dc.subject | Resolution | es_ES |
dc.subject | MCR | es_ES |
dc.subject | CLS | es_ES |
dc.subject | MIA | es_ES |
dc.subject | Texture | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | MIA and NIR Chemical Imaging for pharmaceutical product characterization | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | |
dc.identifier.doi | 10.1016/j.chemolab.2012.04.002 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//0821113/US/MRI: Acquisition of NIR Chemical Imaging Spectrometer to Study Novel Organic Composites/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NSF//0540855/US/Engineering Research Center (ERC) for Structured Organic Composites for Pharmaceutical, Nutraceutical, and Agrochemical Applications(C-SOC)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Prats-Montalbán, JM.; Jerez-Rozo, J.; Romanach, R.; Ferrer Riquelme, AJ. (2012). MIA and NIR Chemical Imaging for pharmaceutical product characterization. Chemometrics and Intelligent Laboratory Systems. 117(117):240-249. https://doi.org/10.1016/j.chemolab.2012.04.002 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 1st African-European Conference on Chemometrics (Afrodata) | |
dc.relation.conferencedate | September 20-24, 2010 | |
dc.relation.conferenceplace | Rabat, Morocco | |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.chemolab.2012.04.002 | es_ES |
dc.description.upvformatpinicio | 240 | es_ES |
dc.description.upvformatpfin | 249 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 117 | es_ES |
dc.description.issue | 117 | es_ES |
dc.relation.senia | 236507 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | National Science Foundation, EEUU |