- -

On the existence of polynomials with chaotic behaviour

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the existence of polynomials with chaotic behaviour

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernardes, Nilson C. es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.date.accessioned 2014-10-07T08:32:11Z
dc.date.available 2014-10-07T08:32:11Z
dc.date.issued 2013
dc.identifier.issn 0972-6802
dc.identifier.uri http://hdl.handle.net/10251/40690
dc.description.abstract We establish a general result on the existence of hypercyclic (resp., transitive, weakly mixing, mixing, frequently hypercyclic) polynomials on locally convex spaces. As a consequence we prove that every (real or complex) infinite-dimensional separable Frèchet space admits mixing (hence hypercyclic) polynomials of arbitrary positive degree. Moreover, every complex infinite-dimensional separable Banach space with an unconditional Schauder decomposition and every complex Frèchet space with an unconditional basis support chaotic and frequently hypercyclic polynomials of arbitrary positive degree. We also study distributional chaos for polynomials and show that every infinite-dimensional separable Banach space supports polynomials of arbitrary positive degree that have a dense distributionally scrambled linear manifold. © 2013 Nilson C. Bernardes Jr. and Alfredo Peris. es_ES
dc.description.sponsorship The present work was done while the first author was visiting the Departament de Matematica Aplicada at Universitat Politecnica de Valencia (Spain). The first author is very grateful for the hospitality. The first author was supported in part by CAPES: Bolsista, Project no. BEX 4012/11-9. The second author was supported in part by MEC and FEDER, Project MTM2010-14909, and by GVA, Projects PROMETEO/2008/101 and PROMETEOII/2013/013. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Journal of Function Spaces and Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Topological vector-spaces es_ES
dc.subject Hypercyclic polynomials es_ES
dc.subject Hypercyclic operators es_ES
dc.subject Distributional chaos es_ES
dc.subject Linear-operators es_ES
dc.subject Banach-Spaces es_ES
dc.subject Mixing polynomials es_ES
dc.subject Frequently hypercyclic polynomials es_ES
dc.subject Chaotic polynomials es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On the existence of polynomials with chaotic behaviour es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2013/320961
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//BEX 4012%2F11-9/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bernardes, NC.; Peris Manguillot, A. (2013). On the existence of polynomials with chaotic behaviour. Journal of Function Spaces and Applications. 2013(320961). https://doi.org/10.1155/2013/320961 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2013/320961 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2013 es_ES
dc.description.issue 320961 es_ES
dc.relation.senia 259506
dc.identifier.eissn 1758-4965
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder European Regional Development Fund
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113 es_ES
dc.description.references Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1 es_ES
dc.description.references Rolewicz, S. (1969). On orbits of elements. Studia Mathematica, 32(1), 17-22. doi:10.4064/sm-32-1-17-22 es_ES
dc.description.references Herzog, G. (1992). On linear operators having supercyclic vectors. Studia Mathematica, 103(3), 295-298. doi:10.4064/sm-103-3-295-298 es_ES
dc.description.references Ansari, S. I. (1997). Existence of Hypercyclic Operators on Topological Vector Spaces. Journal of Functional Analysis, 148(2), 384-390. doi:10.1006/jfan.1996.3093 es_ES
dc.description.references Bernal-González, L. (1999). Proceedings of the American Mathematical Society, 127(04), 1003-1011. doi:10.1090/s0002-9939-99-04657-2 es_ES
dc.description.references Bonet, J., & Peris, A. (1998). Hypercyclic Operators on Non-normable Fréchet Spaces. Journal of Functional Analysis, 159(2), 587-595. doi:10.1006/jfan.1998.3315 es_ES
dc.description.references Bonet, J., Martínez-Giménez, F., & Peris, A. (2001). A Banach Space which Admits No Chaotic Operator. Bulletin of the London Mathematical Society, 33(2), 196-198. doi:10.1112/blms/33.2.196 es_ES
dc.description.references Shkarin, S. (2008). On the spectrum of frequently hypercyclic operators. Proceedings of the American Mathematical Society, 137(01), 123-134. doi:10.1090/s0002-9939-08-09655-x es_ES
dc.description.references De la Rosa, M., Frerick, L., Grivaux, S., & Peris, A. (2011). Frequent hypercyclicity, chaos, and unconditional Schauder decompositions. Israel Journal of Mathematics, 190(1), 389-399. doi:10.1007/s11856-011-0210-6 es_ES
dc.description.references Bernardes, N. C. (1998). ON ORBITS OF POLYNOMIAL MAPS IN BANACH SPACES. Quaestiones Mathematicae, 21(3-4), 311-318. doi:10.1080/16073606.1998.9632049 es_ES
dc.description.references Bernardes Jr., N. C. (1998). Proceedings of the American Mathematical Society, 126(10), 3037-3045. doi:10.1090/s0002-9939-98-04483-9 es_ES
dc.description.references Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 es_ES
dc.description.references Peris, A. (2001). Proceedings of the American Mathematical Society, 129(12), 3759-3761. doi:10.1090/s0002-9939-01-06274-8 es_ES
dc.description.references ARON, R. M., & MIRALLES, A. (2008). CHAOTIC POLYNOMIALS IN SPACES OF CONTINUOUS AND DIFFERENTIABLE FUNCTIONS. Glasgow Mathematical Journal, 50(2), 319-323. doi:10.1017/s0017089508004229 es_ES
dc.description.references Peris, A. (2003). Chaotic polynomials on Banach spaces. Journal of Mathematical Analysis and Applications, 287(2), 487-493. doi:10.1016/s0022-247x(03)00547-x es_ES
dc.description.references MARTÍNEZ-GIMÉNEZ, F., & PERIS, A. (2010). CHAOTIC POLYNOMIALS ON SEQUENCE AND FUNCTION SPACES. International Journal of Bifurcation and Chaos, 20(09), 2861-2867. doi:10.1142/s0218127410027416 es_ES
dc.description.references Martínez-Giménez, F., & Peris, A. (2009). Existence of hypercyclic polynomials on complex Fréchet spaces. Topology and its Applications, 156(18), 3007-3010. doi:10.1016/j.topol.2009.02.010 es_ES
dc.description.references Bès, J., & Peris, A. (2007). Disjointness in hypercyclicity. Journal of Mathematical Analysis and Applications, 336(1), 297-315. doi:10.1016/j.jmaa.2007.02.043 es_ES
dc.description.references Bernardes, N. C., Bonilla, A., Müller, V., & Peris, A. (2013). Distributional chaos for linear operators. Journal of Functional Analysis, 265(9), 2143-2163. doi:10.1016/j.jfa.2013.06.019 es_ES
dc.description.references Le�n-Saavedra, F., & M�ller, V. (2004). Rotations of Hypercyclic and Supercyclic Operators. Integral Equations and Operator Theory, 50(3), 385-391. doi:10.1007/s00020-003-1299-8 es_ES
dc.description.references Grosse-Erdmann, K.-G., & Peris, A. (2010). Weakly mixing operators on topological vector spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 104(2), 413-426. doi:10.5052/racsam.2010.25 es_ES
dc.description.references Li, T.-Y., & Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985. doi:10.2307/2318254 es_ES
dc.description.references Schweizer, B., & Smital, J. (1994). Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Transactions of the American Mathematical Society, 344(2), 737. doi:10.2307/2154504 es_ES
dc.description.references Bermúdez, T., Bonilla, A., Martínez-Giménez, F., & Peris, A. (2011). Li–Yorke and distributionally chaotic operators. Journal of Mathematical Analysis and Applications, 373(1), 83-93. doi:10.1016/j.jmaa.2010.06.011 es_ES
dc.description.references Hou, B., Cui, P., & Cao, Y. (2010). Chaos for Cowen-Douglas operators. Proceedings of the American Mathematical Society, 138(03), 929-929. doi:10.1090/s0002-9939-09-10046-1 es_ES
dc.description.references Martínez-Giménez, F., Oprocha, P., & Peris, A. (2009). Distributional chaos for backward shifts. Journal of Mathematical Analysis and Applications, 351(2), 607-615. doi:10.1016/j.jmaa.2008.10.049 es_ES
dc.description.references Schenke, A., & Shkarin, S. (2013). Hypercyclic operators on countably dimensional spaces. Journal of Mathematical Analysis and Applications, 401(1), 209-217. doi:10.1016/j.jmaa.2012.11.013 es_ES
dc.description.references BONET, J., FRERICK, L., PERIS, A., & WENGENROTH, J. (2005). TRANSITIVE AND HYPERCYCLIC OPERATORS ON LOCALLY CONVEX SPACES. Bulletin of the London Mathematical Society, 37(02), 254-264. doi:10.1112/s0024609304003698 es_ES
dc.description.references Shkarin, S. (2012). Hypercyclic operators on topological vector spaces. Journal of the London Mathematical Society, 86(1), 195-213. doi:10.1112/jlms/jdr082 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem