Albanese, AA.; Bonet Solves, JA.; Ricker, WJ. (2013). Convergence of arithmetic means of operators in Fréchet spaces. Journal of Mathematical Analysis and Applications. 401(1):160-173. https://doi.org/10.1016/j.jmaa.2012.11.060
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43075
Title:
|
Convergence of arithmetic means of operators in Fréchet spaces
|
Author:
|
Albanese, Angela Ama
Bonet Solves, José Antonio
Ricker, Werner J.
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
Every Köthe echelon Fréchet space XX that is Montel and not isomorphic to a countable product of copies of the scalar field admits a power bounded continuous linear operator TT such that I−TI−T does not have closed range, ...[+]
Every Köthe echelon Fréchet space XX that is Montel and not isomorphic to a countable product of copies of the scalar field admits a power bounded continuous linear operator TT such that I−TI−T does not have closed range, but the sequence of arithmetic means of the iterates of TT converges to 0 uniformly on the bounded sets in XX. On the other hand, if XX is a Fréchet space which does not have a quotient isomorphic to a nuclear Köthe echelon space with a continuous norm, then the sequence of arithmetic means of the iterates of any continuous linear operator TT (for which (1/n)Tn(1/n)Tn converges to 0 on the bounded sets) converges uniformly on the bounded subsets of XX, i.e., TT is uniformly mean ergodic, if and only if the range of I−TI−T is closed. This result extends a theorem due to Lin for such operators on Banach spaces. The connection of Browder’s equality for power bounded operators on Fréchet spaces to their uniform mean ergodicity is exposed. An analysis of the mean ergodic properties of the classical Cesàro operator on Banach sequence spaces is also given. © 2012 Elsevier Ltd. All rights reserved.
[-]
|
Subjects:
|
Fréchet space
,
Köthe echelon space
,
Power bounded operator
,
Prequojection
,
Quojection
,
Uniformly mean ergodic operator
,
Equation
,
Spectrum
,
Banach-Spaces
,
Uniform ergodic theorem
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
Journal of Mathematical Analysis and Applications. (issn:
0022-247X
) (eissn:
1096-0813
)
|
DOI:
|
10.1016/j.jmaa.2012.11.060
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.jmaa.2012.11.060
|
Project ID:
|
info:eu-repo/grantAgreement/MEC//MTM2007-62643/ES/METODOS DE ANALISIS FUNCIONAL PARA EL ANALISIS COMPLEJO Y LAS ECUACIONES EN DERIVADAS PARCIALES/
info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F090/
|
Thanks:
|
The research of Jose Bonet was partially supported by MEC and FEDER Project MTM 2007-62643, GV Project Prometeo/2008/101 (Spain) and ACOMP/2012/090.
|
Type:
|
Artículo
|