- -

Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment

Show full item record

Hernández, L.; Baladrón Zorita, C.; Aguiar Pérez, JM.; Calavia Domínguez, L.; Carro Martínez, B.; Sanchez-Esguevillas, A.; Sanjuan, J.... (2013). Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment. Energies. 6(9):4489-4507. doi:10.3390/en6094489

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43122

Files in this item

Item Metadata

Title: Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment
Author: Hernández, Luis Baladrón Zorita, Carlos Aguiar Pérez, Javier Manuel Calavia Domínguez, Lorena Carro Martínez, Belén Sanchez-Esguevillas, Antonio Sanjuan, Javier Gonzalez, Alvaro Lloret, Jaime
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres
Issued date:
Abstract:
Short-Term Load Forecasting plays a significant role in energy generation planning, and is specially gaining momentum in the emerging Smart Grids environment, which usually presents highly disaggregated scenarios where ...[+]
Subjects: artificial neural network , short-term load forecasting , microgrid , multilayer perceptron , peak load forecasting , valley load forecasting , next day’s total load
Copyrigths: Reconocimiento (by)
Source:
Energies. (issn: 1996-1073 )
DOI: 10.3390/en6094489
Publisher:
MDPI
Publisher version: http://dx.doi.org/10.3390/en6094489
Type: Artículo

This item appears in the following Collection(s)

Show full item record