- -

Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Castellvi, Quim es_ES
dc.contributor.author Burdío, Fernando es_ES
dc.contributor.author Sánchez Velázquez, Patricia es_ES
dc.contributor.author Ivorra, Antoni es_ES
dc.contributor.author Andaluz, Anna es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2014-10-13T12:38:45Z
dc.date.available 2014-10-13T12:38:45Z
dc.date.issued 2013-05
dc.identifier.issn 0265-6736
dc.identifier.uri http://hdl.handle.net/10251/43198
dc.description.abstract Purpose: The aim of this study was to assess the feasibility of a hybrid ablative technique based on applying electroporation (EP) pulses just before conducting radiofrequency ablation (RFA). The rationale was that the EP-induced reduction in blood perfusion could be sufficient to reduce the thermal sink effect and hence to increase the coagulation volume in comparison to that created exclusively by RFA. Materials and methods: A modelling study and in vivo experimental study were used. A Cool-tip RF applicator was used both for EP and RFA. Results: Overall, the results did not show any synergy effect from using the hybrid technique. Applying EP pulses prior to RFA did not increase the coagulation zone obtained and the lesions were almost identical. Additional computer simulations provided an explanation for this; the effect of reducing blood perfusion by thermal damage during RFA completely masks the effect of reducing blood perfusion by EP. This is because both thermal damage and EP affect the same zone, i.e. the tissue around the electrode. Conclusions: Our computer modelling and in vivo experimental findings suggest that the combination of EP and RFA with monopolar applicators does not provide an additional benefit over the use of RFA alone. es_ES
dc.description.sponsorship This work received financial support from the Spanish 'Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion' Grant nos. TEC2011-27133-C02-01,02 and TEC2010-17285, from the European Commission through the Marie Curie IRG grant TAMIVIVE (256376) and from the Universitat Politecnica de Valencia (INNOVA11-01-5502; and PAID-06-11 Ref. 1988). The linguistic revision of this paper was funded by the Universitat Politecnica de Valencia, Spain. The authors alone are responsible for the content and writing of the paper. en_EN
dc.language Inglés es_ES
dc.publisher Informa Healthcare es_ES
dc.relation.ispartof International Journal of Hyperthermia es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Tumour ablation es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject In vivo model es_ES
dc.subject Electroporation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3109/02656736.2013.777854
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2010-17285/ES/METODOS Y HERRAMIENTAS PARA LA ELECTROPORACION IN VIVO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/256376/EU/Tools and methods for in vivo electroporation/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-11-1988/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//INNOVA11-01- 5502/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2011-27133-C02-02/ES/EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Trujillo Guillen, M.; Castellvi, Q.; Burdío, F.; Sánchez Velázquez, P.; Ivorra, A.; Andaluz, A.; Berjano, E. (2013). Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments. International Journal of Hyperthermia. 29(3):211-218. https://doi.org/10.3109/02656736.2013.777854 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3109/02656736.2013.777854 es_ES
dc.description.upvformatpinicio 211 es_ES
dc.description.upvformatpfin 218 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 255193
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Poon, R. T.-P., Fan, S.-T., Tsang, F. H.-F., & Wong, J. (2002). Locoregional Therapies for Hepatocellular Carcinoma: A Critical Review From the Surgeon’s Perspective. Annals of Surgery, 235(4), 466-486. doi:10.1097/00000658-200204000-00004 es_ES
dc.description.references Solbiati, L., Livraghi, T., Goldberg, S. N., Ierace, T., Meloni, F., Dellanoce, M., … Gazelle, G. S. (2001). Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients. Radiology, 221(1), 159-166. doi:10.1148/radiol.2211001624 es_ES
dc.description.references Ahmed, M., Brace, C. L., Lee, F. T., & Goldberg, S. N. (2011). Principles of and Advances in Percutaneous Ablation. Radiology, 258(2), 351-369. doi:10.1148/radiol.10081634 es_ES
dc.description.references Nikfarjam, M., Muralidharan, V., & Christophi, C. (2005). Mechanisms of Focal Heat Destruction of Liver Tumors. Journal of Surgical Research, 127(2), 208-223. doi:10.1016/j.jss.2005.02.009 es_ES
dc.description.references Burdio, F., Mulier, S., Navarro, A., Figueras, J., Berjano, E., Poves, I., & Grande, L. (2008). Influence of approach on outcome in radiofrequency ablation of liver tumors. Surgical Oncology, 17(4), 295-299. doi:10.1016/j.suronc.2008.03.002 es_ES
dc.description.references Marty, M., Sersa, G., Garbay, J. R., Gehl, J., Collins, C. G., Snoj, M., … Mir, L. M. (2006). Electrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. European Journal of Cancer Supplements, 4(11), 3-13. doi:10.1016/j.ejcsup.2006.08.002 es_ES
dc.description.references Davalos, R. V., Mir, L. M., & Rubinsky, B. (2005). Tissue Ablation with Irreversible Electroporation. Annals of Biomedical Engineering, 33(2), 223-231. doi:10.1007/s10439-005-8981-8 es_ES
dc.description.references Sers ̌a, G., C ̌emaz ̌ar, M., Parkins, C. S., & Chaplin, D. J. (1999). Tumour blood flow changes induced by application of electric pulses. European Journal of Cancer, 35(4), 672-677. doi:10.1016/s0959-8049(98)00426-2 es_ES
dc.description.references Ramirez, L., Orlowski, S., An, D., Bindoula, G., Dzodic, R., Ardouin, P., … Mir, L. (1998). Electrochemotherapy on liver tumours in rabbits. British Journal of Cancer, 77(12), 2104-2111. doi:10.1038/bjc.1998.354 es_ES
dc.description.references Bellard, E., Markelc, B., Pelofy, S., Le Guerroué, F., Sersa, G., Teissié, J., … Golzio, M. (2012). Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization. Journal of Controlled Release, 163(3), 396-403. doi:10.1016/j.jconrel.2012.09.010 es_ES
dc.description.references Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03 es_ES
dc.description.references Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341 es_ES
dc.description.references Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076 es_ES
dc.description.references Ivorra, A., & Rubinsky, B. (2007). In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry, 70(2), 287-295. doi:10.1016/j.bioelechem.2006.10.005 es_ES
dc.description.references Ivorra, A., Mir, L. M., & Rubinsky, B. (2009). Electric Field Redistribution due to Conductivity Changes during Tissue Electroporation: Experiments with a Simple Vegetal Model. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 59-62. doi:10.1007/978-3-642-03895-2_18 es_ES
dc.description.references Lacković, I., Magjarević, R., & Miklavčič, D. (2010). Incorporating Electroporation-related Conductivity Changes into Models for the Calculation of the Electric Field Distribution in Tissue. IFMBE Proceedings, 695-698. doi:10.1007/978-3-642-13039-7_175 es_ES
dc.description.references Sel, D., Cukjati, D., Batiuskaite, D., Slivnik, T., Mir, L. M., & Miklavcic, D. (2005). Sequential Finite Element Model of Tissue Electropermeabilization. IEEE Transactions on Biomedical Engineering, 52(5), 816-827. doi:10.1109/tbme.2005.845212 es_ES
dc.description.references Gehl, J., Skovsgaard, T., & Mir, L. M. (2002). Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochimica et Biophysica Acta (BBA) - General Subjects, 1569(1-3), 51-58. doi:10.1016/s0304-4165(01)00233-1 es_ES
dc.description.references Pennes, H. H. (1998). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 85(1), 5-34. doi:10.1152/jappl.1998.85.1.5 es_ES
dc.description.references Pearce, J., Panescu, D., & Thomsen, S. (2005). Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea. Modelling in Medicine and Biology VI. doi:10.2495/bio050451 es_ES
dc.description.references Yang, D., Converse, M. C., Mahvi, D. M., & Webster, J. G. (2007). Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating. IEEE Transactions on Biomedical Engineering, 54(8), 1382-1388. doi:10.1109/tbme.2007.890740 es_ES
dc.description.references Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004 es_ES
dc.description.references Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 es_ES
dc.description.references Arata, M. A., Nisenbaum, H. L., Clark, T. W. I., & Soulen, M. C. (2001). Percutaneous Radiofrequency Ablation of Liver Tumors with the LeVeen Probe: Is Roll-off Predictive of Response? Journal of Vascular and Interventional Radiology, 12(4), 455-458. doi:10.1016/s1051-0443(07)61884-3 es_ES
dc.description.references Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 es_ES
dc.description.references Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 es_ES
dc.description.references Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 es_ES
dc.description.references Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 es_ES
dc.description.references Chang, S.-J., Yu, W.-J., Chang, C.-C., & Chen, Y.-H. (2010). 7 PROTEOMICS ANALYSIS OF MALE REPRODUCTIVE PHYSIOLOGY BY TOONA SINENSIS ROEM. Reproductive BioMedicine Online, 20, S3-S4. doi:10.1016/s1472-6483(10)62425-x es_ES
dc.description.references Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 es_ES
dc.description.references Goldberg, S. N., Grassi, C. J., Cardella, J. F., Charboneau, J. W., Dodd, G. D., Dupuy, D. E., … Sacks, D. (2009). Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria. Journal of Vascular and Interventional Radiology, 20(7), S377-S390. doi:10.1016/j.jvir.2009.04.011 es_ES
dc.description.references Dos Santos, I., Haemmerich, D., Schutt, D., da Rocha, A. F., & Menezes, L. R. (2009). Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Physics in Medicine and Biology, 54(3), 627-640. doi:10.1088/0031-9155/54/3/010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem