Mostrar el registro sencillo del ítem
dc.contributor.author | Trujillo Guillen, Macarena | es_ES |
dc.contributor.author | Castellvi, Quim | es_ES |
dc.contributor.author | Burdío, Fernando | es_ES |
dc.contributor.author | Sánchez Velázquez, Patricia | es_ES |
dc.contributor.author | Ivorra, Antoni | es_ES |
dc.contributor.author | Andaluz, Anna | es_ES |
dc.contributor.author | Berjano, Enrique | es_ES |
dc.date.accessioned | 2014-10-13T12:38:45Z | |
dc.date.available | 2014-10-13T12:38:45Z | |
dc.date.issued | 2013-05 | |
dc.identifier.issn | 0265-6736 | |
dc.identifier.uri | http://hdl.handle.net/10251/43198 | |
dc.description.abstract | Purpose: The aim of this study was to assess the feasibility of a hybrid ablative technique based on applying electroporation (EP) pulses just before conducting radiofrequency ablation (RFA). The rationale was that the EP-induced reduction in blood perfusion could be sufficient to reduce the thermal sink effect and hence to increase the coagulation volume in comparison to that created exclusively by RFA. Materials and methods: A modelling study and in vivo experimental study were used. A Cool-tip RF applicator was used both for EP and RFA. Results: Overall, the results did not show any synergy effect from using the hybrid technique. Applying EP pulses prior to RFA did not increase the coagulation zone obtained and the lesions were almost identical. Additional computer simulations provided an explanation for this; the effect of reducing blood perfusion by thermal damage during RFA completely masks the effect of reducing blood perfusion by EP. This is because both thermal damage and EP affect the same zone, i.e. the tissue around the electrode. Conclusions: Our computer modelling and in vivo experimental findings suggest that the combination of EP and RFA with monopolar applicators does not provide an additional benefit over the use of RFA alone. | es_ES |
dc.description.sponsorship | This work received financial support from the Spanish 'Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion' Grant nos. TEC2011-27133-C02-01,02 and TEC2010-17285, from the European Commission through the Marie Curie IRG grant TAMIVIVE (256376) and from the Universitat Politecnica de Valencia (INNOVA11-01-5502; and PAID-06-11 Ref. 1988). The linguistic revision of this paper was funded by the Universitat Politecnica de Valencia, Spain. The authors alone are responsible for the content and writing of the paper. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Informa Healthcare | es_ES |
dc.relation.ispartof | International Journal of Hyperthermia | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Tumour ablation | es_ES |
dc.subject | Radiofrequency ablation | es_ES |
dc.subject | In vivo model | es_ES |
dc.subject | Electroporation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3109/02656736.2013.777854 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2010-17285/ES/METODOS Y HERRAMIENTAS PARA LA ELECTROPORACION IN VIVO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/256376/EU/Tools and methods for in vivo electroporation/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-1988/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//INNOVA11-01- 5502/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2011-27133-C02-01/ES/MODELADO TEORICO Y EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2011-27133-C02-02/ES/EXPERIMENTACION PARA TECNICAS ABLATIVAS BASADAS EN ENERGIA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Trujillo Guillen, M.; Castellvi, Q.; Burdío, F.; Sánchez Velázquez, P.; Ivorra, A.; Andaluz, A.; Berjano, E. (2013). Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments. International Journal of Hyperthermia. 29(3):211-218. https://doi.org/10.3109/02656736.2013.777854 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3109/02656736.2013.777854 | es_ES |
dc.description.upvformatpinicio | 211 | es_ES |
dc.description.upvformatpfin | 218 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 29 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 255193 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Poon, R. T.-P., Fan, S.-T., Tsang, F. H.-F., & Wong, J. (2002). Locoregional Therapies for Hepatocellular Carcinoma: A Critical Review From the Surgeon’s Perspective. Annals of Surgery, 235(4), 466-486. doi:10.1097/00000658-200204000-00004 | es_ES |
dc.description.references | Solbiati, L., Livraghi, T., Goldberg, S. N., Ierace, T., Meloni, F., Dellanoce, M., … Gazelle, G. S. (2001). Percutaneous Radio-frequency Ablation of Hepatic Metastases from Colorectal Cancer: Long-term Results in 117 Patients. Radiology, 221(1), 159-166. doi:10.1148/radiol.2211001624 | es_ES |
dc.description.references | Ahmed, M., Brace, C. L., Lee, F. T., & Goldberg, S. N. (2011). Principles of and Advances in Percutaneous Ablation. Radiology, 258(2), 351-369. doi:10.1148/radiol.10081634 | es_ES |
dc.description.references | Nikfarjam, M., Muralidharan, V., & Christophi, C. (2005). Mechanisms of Focal Heat Destruction of Liver Tumors. Journal of Surgical Research, 127(2), 208-223. doi:10.1016/j.jss.2005.02.009 | es_ES |
dc.description.references | Burdio, F., Mulier, S., Navarro, A., Figueras, J., Berjano, E., Poves, I., & Grande, L. (2008). Influence of approach on outcome in radiofrequency ablation of liver tumors. Surgical Oncology, 17(4), 295-299. doi:10.1016/j.suronc.2008.03.002 | es_ES |
dc.description.references | Marty, M., Sersa, G., Garbay, J. R., Gehl, J., Collins, C. G., Snoj, M., … Mir, L. M. (2006). Electrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study. European Journal of Cancer Supplements, 4(11), 3-13. doi:10.1016/j.ejcsup.2006.08.002 | es_ES |
dc.description.references | Davalos, R. V., Mir, L. M., & Rubinsky, B. (2005). Tissue Ablation with Irreversible Electroporation. Annals of Biomedical Engineering, 33(2), 223-231. doi:10.1007/s10439-005-8981-8 | es_ES |
dc.description.references | Sers ̌a, G., C ̌emaz ̌ar, M., Parkins, C. S., & Chaplin, D. J. (1999). Tumour blood flow changes induced by application of electric pulses. European Journal of Cancer, 35(4), 672-677. doi:10.1016/s0959-8049(98)00426-2 | es_ES |
dc.description.references | Ramirez, L., Orlowski, S., An, D., Bindoula, G., Dzodic, R., Ardouin, P., … Mir, L. (1998). Electrochemotherapy on liver tumours in rabbits. British Journal of Cancer, 77(12), 2104-2111. doi:10.1038/bjc.1998.354 | es_ES |
dc.description.references | Bellard, E., Markelc, B., Pelofy, S., Le Guerroué, F., Sersa, G., Teissié, J., … Golzio, M. (2012). Intravital microscopy at the single vessel level brings new insights of vascular modification mechanisms induced by electropermeabilization. Journal of Controlled Release, 163(3), 396-403. doi:10.1016/j.jconrel.2012.09.010 | es_ES |
dc.description.references | Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03 | es_ES |
dc.description.references | Pätz, T., Kröger, T., & Preusser, T. (2009). Simulation of Radiofrequency Ablation Including Water Evaporation. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 1287-1290. doi:10.1007/978-3-642-03882-2_341 | es_ES |
dc.description.references | Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076 | es_ES |
dc.description.references | Ivorra, A., & Rubinsky, B. (2007). In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry, 70(2), 287-295. doi:10.1016/j.bioelechem.2006.10.005 | es_ES |
dc.description.references | Ivorra, A., Mir, L. M., & Rubinsky, B. (2009). Electric Field Redistribution due to Conductivity Changes during Tissue Electroporation: Experiments with a Simple Vegetal Model. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 59-62. doi:10.1007/978-3-642-03895-2_18 | es_ES |
dc.description.references | Lacković, I., Magjarević, R., & Miklavčič, D. (2010). Incorporating Electroporation-related Conductivity Changes into Models for the Calculation of the Electric Field Distribution in Tissue. IFMBE Proceedings, 695-698. doi:10.1007/978-3-642-13039-7_175 | es_ES |
dc.description.references | Sel, D., Cukjati, D., Batiuskaite, D., Slivnik, T., Mir, L. M., & Miklavcic, D. (2005). Sequential Finite Element Model of Tissue Electropermeabilization. IEEE Transactions on Biomedical Engineering, 52(5), 816-827. doi:10.1109/tbme.2005.845212 | es_ES |
dc.description.references | Gehl, J., Skovsgaard, T., & Mir, L. M. (2002). Vascular reactions to in vivo electroporation: characterization and consequences for drug and gene delivery. Biochimica et Biophysica Acta (BBA) - General Subjects, 1569(1-3), 51-58. doi:10.1016/s0304-4165(01)00233-1 | es_ES |
dc.description.references | Pennes, H. H. (1998). Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. Journal of Applied Physiology, 85(1), 5-34. doi:10.1152/jappl.1998.85.1.5 | es_ES |
dc.description.references | Pearce, J., Panescu, D., & Thomsen, S. (2005). Simulation of diopter changes in radio frequency conductive keratoplasty in the cornea. Modelling in Medicine and Biology VI. doi:10.2495/bio050451 | es_ES |
dc.description.references | Yang, D., Converse, M. C., Mahvi, D. M., & Webster, J. G. (2007). Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating. IEEE Transactions on Biomedical Engineering, 54(8), 1382-1388. doi:10.1109/tbme.2007.890740 | es_ES |
dc.description.references | Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004 | es_ES |
dc.description.references | Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 | es_ES |
dc.description.references | Arata, M. A., Nisenbaum, H. L., Clark, T. W. I., & Soulen, M. C. (2001). Percutaneous Radiofrequency Ablation of Liver Tumors with the LeVeen Probe: Is Roll-off Predictive of Response? Journal of Vascular and Interventional Radiology, 12(4), 455-458. doi:10.1016/s1051-0443(07)61884-3 | es_ES |
dc.description.references | Berjano, E. J. (2006). BioMedical Engineering OnLine, 5(1), 24. doi:10.1186/1475-925x-5-24 | es_ES |
dc.description.references | Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 | es_ES |
dc.description.references | Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 | es_ES |
dc.description.references | Chang, I. A., & Nguyen, U. D. (2004). BioMedical Engineering OnLine, 3(1), 27. doi:10.1186/1475-925x-3-27 | es_ES |
dc.description.references | Chang, S.-J., Yu, W.-J., Chang, C.-C., & Chen, Y.-H. (2010). 7 PROTEOMICS ANALYSIS OF MALE REPRODUCTIVE PHYSIOLOGY BY TOONA SINENSIS ROEM. Reproductive BioMedicine Online, 20, S3-S4. doi:10.1016/s1472-6483(10)62425-x | es_ES |
dc.description.references | Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 | es_ES |
dc.description.references | Goldberg, S. N., Grassi, C. J., Cardella, J. F., Charboneau, J. W., Dodd, G. D., Dupuy, D. E., … Sacks, D. (2009). Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria. Journal of Vascular and Interventional Radiology, 20(7), S377-S390. doi:10.1016/j.jvir.2009.04.011 | es_ES |
dc.description.references | Dos Santos, I., Haemmerich, D., Schutt, D., da Rocha, A. F., & Menezes, L. R. (2009). Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Physics in Medicine and Biology, 54(3), 627-640. doi:10.1088/0031-9155/54/3/010 | es_ES |