Mostrar el registro sencillo del ítem
dc.contributor.author | García March, Miguel Ángel | es_ES |
dc.contributor.author | Gimenez Palomares, Fernando | es_ES |
dc.contributor.author | Villatoro, Francisco R. | es_ES |
dc.contributor.author | Pérez Quiles, María Jezabel | es_ES |
dc.contributor.author | Fernández de Córdoba Castellá, Pedro José | es_ES |
dc.date.accessioned | 2014-10-14T14:03:30Z | |
dc.date.available | 2014-10-14T14:03:30Z | |
dc.date.issued | 2011-05-15 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.uri | http://hdl.handle.net/10251/43259 | |
dc.description.abstract | A new and straightforward proof of the unisolvability of the problem of multivariate polynomial interpolation based on Coatmèlec configurations of nodes, a class of properly posed set of nodes defined by hyperplanes, is presented. The proof generalizes a previous one for the bivariate case and is based on a recursive reduction of the problem to simpler ones following the so-called Radon–Bézout process. | es_ES |
dc.description.sponsorship | The authors thank to Drs. Mariano Gasca and Juan I. Ramos for pointing us some references and for their useful comments which have greatly improved the presentation. The authors also thank a reviewer for pointing out a mistake in the original Proof of Lemma 5. The research reported in this paper was partially supported by Project MTM2010-19969 from the Ministerio de Ciencia e Innovacion of Spain and Grant PAID-06-09-2734 from the Universidad Politecnica de Valencia. M. A. G. M. acknowledges support from the Spanish Ministry of Science and Education (MEC), Fulbright Commission, and FECYT. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Multivariate interpolation | es_ES |
dc.subject | Properly posed set of nodes | es_ES |
dc.subject | Geometric characterization | es_ES |
dc.subject | Coatmèlec lattices | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Unisolvency for Multivariate Polynomial Interpolation in Coatmèlec Configurations of Nodes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.amc.2011.02.034 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-19969/ES/DESARROLLO Y ANALISIS DE TECNICAS NUMERICAS PARA ECUACIONES CON SOLUCIONES DE TIPO COMPACTON/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-09-2734/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | García March, MÁ.; Gimenez Palomares, F.; Villatoro, FR.; Pérez Quiles, MJ.; Fernández De Córdoba Castellá, PJ. (2011). Unisolvency for Multivariate Polynomial Interpolation in Coatmèlec Configurations of Nodes. Applied Mathematics and Computation. 217(18):7427-7431. https://doi.org/10.1016/j.amc.2011.02.034 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.amc.2011.02.034 | es_ES |
dc.description.upvformatpinicio | 7427 | es_ES |
dc.description.upvformatpfin | 7431 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 217 | es_ES |
dc.description.issue | 18 | es_ES |
dc.relation.senia | 41341 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Fundación Española para la Ciencia y la Tecnología | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Fulbright Commission | es_ES |