- -

Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dai, Min es_ES
dc.contributor.author Tang, Dunbing es_ES
dc.contributor.author Giret Boggino, Adriana Susana es_ES
dc.contributor.author Salido Gregorio, Miguel Angel es_ES
dc.contributor.author Li, W.D. es_ES
dc.date.accessioned 2014-10-21T15:38:32Z
dc.date.available 2014-10-21T15:38:32Z
dc.date.issued 2013-11
dc.identifier.issn 0736-5845
dc.identifier.uri http://hdl.handle.net/10251/43457
dc.description This is the author’s version of a work that was accepted for publication in Robotics and Computer-Integrated Manufacturing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Robotics and Computer-Integrated Manufacturing, [Volume 29, Issue 5, October 2013, Pages 418–429] DOI10.1016/j.rcim.2013.04.001 es_ES
dc.description.abstract [EN] The traditional production scheduling problem considers performance indicators such as processing time, cost and quality as optimization objectives in manufacturing systems; however, it does not take energy consumption and environmental impacts into account completely. Therefore, this paper proposes an energy-efficient model for flexible flow-shop scheduling (FFS). First, a mathematical model for a FFS problem, which is based on an energy-efficient mechanism, is described to solve multi-objective optimization. Since FFS is well known as the NPhard problem, an improved genetic-simulated annealing algorithm is adopted to make a significant trade-off between the makespan and the total energy consumption for implementing a feasible scheduling. Finally, a case study of production scheduling problem for metalworking workshop in a plant is simulated. The experimental results show the relationship between the makespan and the energy consumption is conflicting apparently. Moreover, an energy saving decision is performed in a feasible scheduling. Using the decision method, there can be a significant potential to minimize energy consumption while complying with the conflicting relationship es_ES
dc.description.sponsorship This research was carried out as a part of the CASES project which is supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program under the Grant agreement no 294931. This research was also supported by National Science Foundation of China (No. 51175262), Jiangsu Province Science Foundation for Excellent Youths (No. BK201210111), Jiangsu Province Industry-Academy-Research Grant (No. BY201220116), the NUAA Fundamental Research Fund (No. NS2013053), the Project Funded by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the research project TIN2010-20976-C02-01 (Ministry of Science and Innovation, Spain). en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Robotics and Computer-Integrated Manufacturing es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Flexible flow-shop scheduling (FFS) es_ES
dc.subject Energy consumption es_ES
dc.subject Energy saving es_ES
dc.subject Makespan es_ES
dc.subject Genetic-simulated annealing algorithm es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.rcim.2013.04.001
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/294931/EU/Customised Advisory Services for Energy-efficient Manufacturing Systems/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-01/ES/TECNICAS PARA LA EVALUACION Y OBTENCION DE SOLUCIONES ESTABLES Y ROBUSTAS EN PROBLEMAS DE OPTIMIZACION Y SATISFACCION DE RESTRICCIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Dai, M.; Tang, D.; Giret Boggino, AS.; Salido Gregorio, MA.; Li, W. (2013). Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm. Robotics and Computer-Integrated Manufacturing. 29(5):418-429. https://doi.org/10.1016/j.rcim.2013.04.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.rcim.2013.04.001 es_ES
dc.description.upvformatpinicio 418 es_ES
dc.description.upvformatpfin 429 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 245129
dc.contributor.funder European Commission
dc.contributor.funder National Science Foundation, China
dc.contributor.funder Ministerio de Ciencia e Innovación


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem