- -

Maximal subgroups and PST-groups

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Maximal subgroups and PST-groups

Show full item record

Ballester-Bolinches, A.; Beidleman, J.; Esteban Romero, R.; Pérez-Calabuig, V. (2013). Maximal subgroups and PST-groups. Central European Journal of Mathematics. 11(6):1078-1082. https://doi.org/10.2478/s11533-013-0222-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43470

Files in this item

Item Metadata

Title: Maximal subgroups and PST-groups
Author: Ballester-Bolinches, A. Beidleman, J.C. Esteban Romero, Ramón Pérez-Calabuig, V.
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
A subgroup H of a group G is said r to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite ...[+]
Subjects: Finite groups , Permutability , Sylow-permutability , Maximal subgroups , Supersolubility
Copyrigths: Reserva de todos los derechos
Source:
Central European Journal of Mathematics. (issn: 1895-1074 )
DOI: 10.2478/s11533-013-0222-z
Publisher:
Springer Verlag (Germany)
Publisher version: http://link.springer.com/article/10.2478%2Fs11533-013-0222-z
Project ID:
info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-01/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES I/
Description: The final publication is available at Springer via http://dx.doi.org/10.2478/s11533-013-0222-z
Thanks:
The first and third author have been supported by the research grant MTM2010-19938-C03-01 from MICINN (Spain).
Type: Artículo

References

Huppert, B. (1967). Endliche Gruppen I. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-642-64981-3

Doerk, K., & Hawkes, T. O. (1992). Finite Soluble Groups. doi:10.1515/9783110870138

Ballester-Bolinches, A., Esteban-Romero, R., & Asaad, M. (2010). Products of Finite Groups. de Gruyter Expositions in Mathematics. doi:10.1515/9783110220612 [+]
Huppert, B. (1967). Endliche Gruppen I. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-642-64981-3

Doerk, K., & Hawkes, T. O. (1992). Finite Soluble Groups. doi:10.1515/9783110870138

Ballester-Bolinches, A., Esteban-Romero, R., & Asaad, M. (2010). Products of Finite Groups. de Gruyter Expositions in Mathematics. doi:10.1515/9783110220612

Gasch�tz, W. (1953). �ber die ?-Untergruppe endlicher Gruppen. Mathematische Zeitschrift, 58(1), 160-170. doi:10.1007/bf01174137

Kaplan, G. (2010). On T-groups, supersolvable groups, and maximal subgroups. Archiv der Mathematik, 96(1), 19-25. doi:10.1007/s00013-010-0207-0

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record