- -

Unified common fixed point theorems under weak reciprocal continuity or without continuity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Unified common fixed point theorems under weak reciprocal continuity or without continuity

Show full item record

Kadelburg, Z.; Imdad, M.; Chauhan, S. (2014). Unified common fixed point theorems under weak reciprocal continuity or without continuity. Applied General Topology. 15(1):65-84. doi:10.4995/agt.2014.1823

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/43554

Files in this item

Item Metadata

Title: Unified common fixed point theorems under weak reciprocal continuity or without continuity
Author:
Issued date:
Abstract:
[EN] The purpose of this paper is two fold. Firstly, using the notion of weak reciprocal continuity due to Pant et al. Weak reciprocal continuity and fixed point theorems, Ann. Univ. Ferrara Sez. VII Sci. Mat. 57(1), 181-190 ...[+]
Subjects: Metric space , Compatible mappings , R-weakly commuting mappings , weak reciprocal continuity , Coincidentally commuting , Implicit relation
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2014.1823
Publisher:
Editorial Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2014.1823
Type: Artículo

References

J. Ali and M. Imdad, An implicit function implies several contraction conditions, Sarajevo J. Math. 4, no. 2 (2008), 269-285.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.

B. C. Dhage, On common fixed points of coincidentally commuting mappings in $D$-metric spaces, Indian J. Pure Appl. Math. 30, no. 4 (1999), 395-406. [+]
J. Ali and M. Imdad, An implicit function implies several contraction conditions, Sarajevo J. Math. 4, no. 2 (2008), 269-285.

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133-181.

B. C. Dhage, On common fixed points of coincidentally commuting mappings in $D$-metric spaces, Indian J. Pure Appl. Math. 30, no. 4 (1999), 395-406.

Husain, S. A., & Sehgal, V. M. (1975). On common fixed points for a family of mappings. Bulletin of the Australian Mathematical Society, 13(2), 261-267. doi:10.1017/s000497270002445x

M. Imdad and J. Ali, Reciprocal continuity and common fixed points of nonself mappings, Taiwanese J. Math. 13, no. 5 (2009), 1457-1473.

Imdad, M., Ali, J., & Tanveer, M. (2009). Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces. Chaos, Solitons & Fractals, 42(5), 3121-3129. doi:10.1016/j.chaos.2009.04.017

M. Imdad and Q. H. Khan, Six mappings satisfying a rational inequality, Rad. Mat. 9, no. 2 (1999), 251-260.

Imdad, M., Khan, M. S., & Sessa, S. (1988). On some weak conditions of commutativity in common fixed point theorems. International Journal of Mathematics and Mathematical Sciences, 11(2), 289-296. doi:10.1155/s0161171288000353

M. Imdad, S. Kumar and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations. Rad. Mat. 11, no. 1 (2002), 135-143.

Jungck, G. (1976). Commuting Mappings and Fixed Points. The American Mathematical Monthly, 83(4), 261. doi:10.2307/2318216

Jungck, G. (1986). Compatible mappings and common fixed points. International Journal of Mathematics and Mathematical Sciences, 9(4), 771-779. doi:10.1155/s0161171286000935

G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29, no. 3 (1998), 227-238.

M. S. Khan and M. Imdad, A common fixed point theorem for a class of mappings, Indian J. Pure Appl. Math. 14 (1983), 1220-1227.

S. Kumar and R. Chugh, Common fixed points theorem using minimal commutativity and reciprocal continuity conditions in metric space, Sci. Math. Japon. 56, no. 2 (2002), 269-275.

Murthy, P. P. (2001). Important tools and possible applications of metric fixed point theory. Nonlinear Analysis: Theory, Methods & Applications, 47(5), 3479-3490. doi:10.1016/s0362-546x(01)00465-5

Pant, R. P. (1994). Common Fixed Points of Noncommuting Mappings. Journal of Mathematical Analysis and Applications, 188(2), 436-440. doi:10.1006/jmaa.1994.1437

R. P. Pant, Common fixed points of four mappings, Bull. Cal. Math. Soc. 90 (1998), 281-286.

R. P. Pant, Noncompatible mappings and common fixed points, Soochow J. Math. 26 (2000), 29-35.

Pant, R. P., Bisht, R. K., & Arora, D. (2011). Weak reciprocal continuity and fixed point theorems. ANNALI DELL’UNIVERSITA’ DI FERRARA, 57(1), 181-190. doi:10.1007/s11565-011-0119-3

H. K. Pathak, Y. J. Cho and S. M. Kang, Remarks on $R$-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34, no. 2 (1997), 247-257.

H. K. Pathak and M. S. Khan, A comparison of various types of compatible maps and common fixed points, Indian J. Pure Appl. Math. 28, no. 4 (1997), 477-485.

V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32, no. 1 (1999), 157-163.

V. Popa, M. Imdad and J. Ali, Fixed point theorems for a class of mappings governed by strictly contractive implicit function, Southeast Asian Bulletin of Math. 34, no. 5 (2010), 941-952.

S. L. Singh and A. Tomar, Weaker forms of commuting maps and existence of fixed points, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 10, no. 3 (2003), 145-161.

[-]

This item appears in the following Collection(s)

Show full item record