Mostrar el registro sencillo del ítem
dc.contributor.author | Martínez Jiménez, Félix | es_ES |
dc.contributor.author | Oprocha, Piotr | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.date.accessioned | 2014-10-27T10:32:26Z | |
dc.date.available | 2014-10-27T10:32:26Z | |
dc.date.issued | 2013-06 | |
dc.identifier.issn | 0025-5874 | |
dc.identifier.uri | http://hdl.handle.net/10251/43593 | |
dc.description.abstract | In this article we answer in the negative the question of whether hypercyclicity is sufficient for distributional chaos for a continuous linear operator (we even prove that the mixing property does not suffice). Moreover, we show that an extremal situation is possible: There are (hypercyclic and non-hypercyclic) operators such that the whole space consists, except zero, of distributionally irregular vectors. | es_ES |
dc.description.sponsorship | The research of first and third author was supported by MEC and FEDER, project MTM2010-14909 and by GV, Project PROMETEO/2008/101. The research of second author was supported by the Marie Curie European Reintegration Grant of the European Commission under grant agreement no. PERG08-GA-2010-272297. The financial support of these institutions is hereby gratefully acknowledged. We also want to thank X. Barrachina for pointing out to us a gap in the proof of a previous version of Theorem 3.1. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Mathematische Zeitschrift | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Distributional chaos | es_ES |
dc.subject | Hypercyclic operators | es_ES |
dc.subject | Irregular vectors | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Distributional chaos for operators with full scrambled sets | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00209-012-1087-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/272297/EU/Topological aspects of dynamical independence and chaos/ | en_EN |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/Marie Curie European Reintegration Grants (ERG)/PERG08-GA-2010-272297/EU/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Martínez Jiménez, F.; Oprocha, P.; Peris Manguillot, A. (2013). Distributional chaos for operators with full scrambled sets. Mathematische Zeitschrift. 274(1-2):603-612. https://doi.org/10.1007/s00209-012-1087-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00209-012-1087-8 | es_ES |
dc.description.upvformatpinicio | 603 | es_ES |
dc.description.upvformatpfin | 612 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 274 | es_ES |
dc.description.issue | 1-2 | es_ES |
dc.relation.senia | 245663 | |
dc.identifier.eissn | 1432-1823 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Monthly 99(4), 332–334 (1992) | es_ES |
dc.description.references | Barrachina, X., Peris, A.: Distributionally chaotic translation semigroups. J. Differ. Equ. Appl. 18, 751–761 (2012) | es_ES |
dc.description.references | Beauzamy, B.: Introduction to Operator Theory and Invariant Subspaces. North-Holland, Amsterdam (1988) | es_ES |
dc.description.references | Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li–Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373, 83–93 (2011) | es_ES |
dc.description.references | Bayart, F., Matheron, E.: Dynamics of linear operators, vol. 179. Cambridge University Press, London(2009). | es_ES |
dc.description.references | Costakis, G., Sambarino, M.: Topologically mixing hypercyclic operators. Proc. Am. Math. Soc. 132, 385–389 (2004) | es_ES |
dc.description.references | Devaney, R.L.: An introduction to chaotic dynamical systems, 2nd edn. Addison-Wesley Studies in Nonlinearity. Addison-Wesley Publishing Company Advanced Book Program. Redwood City (1989) | es_ES |
dc.description.references | Feldman, N.: Hypercyclicity and supercyclicity for invertible bilateral weighted shifts. Proc. Am. Math. Soc. 131, 479–485 (2003) | es_ES |
dc.description.references | Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. Studia Math. 139(1), 47–68 (2000) | es_ES |
dc.description.references | Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Universitext, Springer, London (2011) | es_ES |
dc.description.references | Hou, B., Cui, P., Cao, Y.: Chaos for Cowen-Douglas operators. Proc. Am. Math. Soc 138, 929–936 (2010) | es_ES |
dc.description.references | Hou, B., Tian, G., Shi, L.: Some dynamical properties for linear operators. Ill. J. Math. 53, 857–864 (2009) | es_ES |
dc.description.references | Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Monthly 82(10), 985–992 (1975) | es_ES |
dc.description.references | Martínez-Giménez, F., Oprocha, P., Peris, A.: Distributional chaos for backward shifts. J. Math. Anal. Appl. 351, 607–615 (2009) | es_ES |
dc.description.references | Müller, V., Peris, A.: A Problem of Beauzamy on Irregular Operators (2011). (Preprint) | es_ES |
dc.description.references | Oprocha, P.: Distributional chaos revisited. Trans. Am. Math. Soc. 361, 4901–4925 (2009) | es_ES |
dc.description.references | Oprocha, P.: A quantum harmonic oscillator and strong chaos. J. Phys. A 39(47), 14559–14565 (2006) | es_ES |
dc.description.references | Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Am. Math. Soc. 344(2), 737–754 (1994) | es_ES |
dc.description.references | Wu, X., Zhu, P.: The principal measure of a quantum harmonic oscillator. J. Phys. A 44(505101), 6 (2011) | es_ES |