Mostrar el registro sencillo del ítem
dc.contributor.author | Kim, Sung Guen | es_ES |
dc.contributor.author | Peris Manguillot, Alfredo | es_ES |
dc.contributor.author | Song, Hyun Gwi | es_ES |
dc.date.accessioned | 2014-10-27T16:00:49Z | |
dc.date.available | 2014-10-27T16:00:49Z | |
dc.date.issued | 2012-11-16 | |
dc.identifier.issn | 0003-889X | |
dc.identifier.uri | http://hdl.handle.net/10251/43606 | |
dc.description.abstract | In this paper, we show that every complex Banach space X with dimension at least 2 supports a numerically hypercyclic d-homogeneous polynomial P for every . Moreover, if X is infinite-dimensional, then one can find hypercyclic non-homogeneous polynomials of arbitrary degree which are at the same time numerically hypercyclic. We prove that weighted shift polynomials cannot be numerically hypercyclic neither on c (0) nor on a"" (p) for 1 a parts per thousand currency sign p < a. In contrast, we characterize numerically hypercyclic weighted shift polynomials on a""(a). | es_ES |
dc.description.sponsorship | S. G. Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2010-0009854) and by Kyungpook National University Research Fund, 2012. A. Peris was supported in part by MICINN and FEDER, Project MTM2010-14909, and by Generalitat Valenciana, Project PROMETEO/2008/101. H. G. Song is partially supported by the BK21 program (KNU) of the government of the republic of Korea. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Archiv der Mathematik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Numerically hypercyclic polynomials | es_ES |
dc.subject | Hypercyclic polynomials | es_ES |
dc.subject | Chaotic Polynomials | es_ES |
dc.subject | Banach-Spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Numerically hypercyclic polynomials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00013-012-0445-4 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/NRF//2010-0009854/KR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Kim, SG.; Peris Manguillot, A.; Song, HG. (2012). Numerically hypercyclic polynomials. Archiv der Mathematik. 99(5):443-452. https://doi.org/10.1007/s00013-012-0445-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00013-012-0445-4 | es_ES |
dc.description.upvformatpinicio | 443 | es_ES |
dc.description.upvformatpfin | 452 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 99 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 235706 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | National Research Foundation of Korea | es_ES |
dc.contributor.funder | Kyungpook National University | es_ES |
dc.description.references | Ansari S.I.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128, 374–383 (1995) | es_ES |
dc.description.references | Ansari S.I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148, 384–390 (1997) | es_ES |
dc.description.references | Aron R.M., Miralles A.: Chaotic polynomials in spaces of continuous and differentiable functions. Glasg. Math. J. 50, 319–323 (2008) | es_ES |
dc.description.references | F. Bayart and E. Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge, 2009. | es_ES |
dc.description.references | Bernal-González L.: On hypercyclic operators on Banach spaces. Proc. Amer. Math. Soc. 127, 1003–1010 (1999) | es_ES |
dc.description.references | Bernardes N.C.: On orbits of polynomial maps in Banach spaces. Quaest. Math. 21, 311–318 (1998) | es_ES |
dc.description.references | Bès J.: Invariant manifolds of hypercyclic vectors for the real scalar case. Proc. Amer. Math. Soc. 127, 1801–1804 (1999) | es_ES |
dc.description.references | Bès J., Peris A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999) | es_ES |
dc.description.references | Birkhoff G.D.: Demonstration d’un theoreme elementaire sur les fonctions entieres. C. R. Acad. Sci. Paris 189, 473–475 (1929) | es_ES |
dc.description.references | Bonet J., Peris A.: Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159, 587–595 (1998) | es_ES |
dc.description.references | Bonet J., Martínez-Giménez F., Peris A.: A Banach space which admits no chaotic operator. Bull. London Math. Soc. 33, 196–198 (2001) | es_ES |
dc.description.references | F.F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. | es_ES |
dc.description.references | F.F. Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973. | es_ES |
dc.description.references | Choi Y.S. et al.: The polynomial numerical index of a Banach space. Proc. Edinburgh Math. Soc. 49, 39–52 (2006) | es_ES |
dc.description.references | Dineen S.: Complex analysis on infinite-dimensional spaces. Springer-Verlag, London (1999) | es_ES |
dc.description.references | Grosse-Erdmann K.-G., Peris-Manguillot A.: Linear chaos, Universitext. Springer-Verlag, London (2011) | es_ES |
dc.description.references | C. Kitai, Invariant closed sets for linear operators, Ph.D. thesis, Univ. of Toronto, 1982. | es_ES |
dc.description.references | Kim S.G.: Norm and numerical radius of 2-homogeneous polynomials on the real space $${\ell_{p}^{2}}$$ , (1 < p < ∞). Kyungpook Math. J. 48, 387–393 (2008) | es_ES |
dc.description.references | Kim S.G., Martin M., Meri J.: On the polynomial numerical index of the real spaces c 0, l 1 and l ∞. J. Math. Anal. Appl. 337, 98–106 (2008) | es_ES |
dc.description.references | Kim S.G., Peris A., Song H.G.: Numerically hypercyclic operators. Integral Equations and Operator Theory 72, 393–402 (2012) | es_ES |
dc.description.references | Martínez-Giménez F., Peris A.: Existence of hypercyclic polynomials on complex Fréchet spaces. Topology and its Appl. 156, 3007–3010 (2009) | es_ES |
dc.description.references | Martínez-Giménez F., Peris A.: Chaotic polynomials on sequence and function spaces. Int. J. Bifurcation and Chaos 20, 2861–2867 (2010) | es_ES |
dc.description.references | Peris A.: Chaotic polynomials on Banach spaces. J. Math. Anal. Appl. 287, 487–493 (2003) | es_ES |
dc.description.references | Peris A.: Erratum to “Chaotic polynomials on Fréchet spaces”. Proc. Amer. Math. Soc. 129, 3759–3760 (2001) | es_ES |
dc.description.references | Rolewicz S.: On orbits of elements. Studia Math. 32, 17–22 (1969) | es_ES |
dc.description.references | Salas H.N.: Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347, 993–1004 (1995) | es_ES |