- -

Numerically hypercyclic polynomials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerically hypercyclic polynomials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kim, Sung Guen es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.contributor.author Song, Hyun Gwi es_ES
dc.date.accessioned 2014-10-27T16:00:49Z
dc.date.available 2014-10-27T16:00:49Z
dc.date.issued 2012-11-16
dc.identifier.issn 0003-889X
dc.identifier.uri http://hdl.handle.net/10251/43606
dc.description.abstract In this paper, we show that every complex Banach space X with dimension at least 2 supports a numerically hypercyclic d-homogeneous polynomial P for every . Moreover, if X is infinite-dimensional, then one can find hypercyclic non-homogeneous polynomials of arbitrary degree which are at the same time numerically hypercyclic. We prove that weighted shift polynomials cannot be numerically hypercyclic neither on c (0) nor on a"" (p) for 1 a parts per thousand currency sign p < a. In contrast, we characterize numerically hypercyclic weighted shift polynomials on a""(a). es_ES
dc.description.sponsorship S. G. Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2010-0009854) and by Kyungpook National University Research Fund, 2012. A. Peris was supported in part by MICINN and FEDER, Project MTM2010-14909, and by Generalitat Valenciana, Project PROMETEO/2008/101. H. G. Song is partially supported by the BK21 program (KNU) of the government of the republic of Korea. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Archiv der Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Numerically hypercyclic polynomials es_ES
dc.subject Hypercyclic polynomials es_ES
dc.subject Chaotic Polynomials es_ES
dc.subject Banach-Spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Numerically hypercyclic polynomials es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00013-012-0445-4
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2010-14909/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NRF//2010-0009854/KR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F101/ES/Análisis funcional, teoría de operadores y aplicaciones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Kim, SG.; Peris Manguillot, A.; Song, HG. (2012). Numerically hypercyclic polynomials. Archiv der Mathematik. 99(5):443-452. https://doi.org/10.1007/s00013-012-0445-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00013-012-0445-4 es_ES
dc.description.upvformatpinicio 443 es_ES
dc.description.upvformatpfin 452 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 99 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 235706
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder National Research Foundation of Korea es_ES
dc.contributor.funder Kyungpook National University es_ES
dc.description.references Ansari S.I.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128, 374–383 (1995) es_ES
dc.description.references Ansari S.I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148, 384–390 (1997) es_ES
dc.description.references Aron R.M., Miralles A.: Chaotic polynomials in spaces of continuous and differentiable functions. Glasg. Math. J. 50, 319–323 (2008) es_ES
dc.description.references F. Bayart and E. Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics 179, Cambridge University Press, Cambridge, 2009. es_ES
dc.description.references Bernal-González L.: On hypercyclic operators on Banach spaces. Proc. Amer. Math. Soc. 127, 1003–1010 (1999) es_ES
dc.description.references Bernardes N.C.: On orbits of polynomial maps in Banach spaces. Quaest. Math. 21, 311–318 (1998) es_ES
dc.description.references Bès J.: Invariant manifolds of hypercyclic vectors for the real scalar case. Proc. Amer. Math. Soc. 127, 1801–1804 (1999) es_ES
dc.description.references Bès J., Peris A.: Hereditarily hypercyclic operators. J. Funct. Anal. 167, 94–112 (1999) es_ES
dc.description.references Birkhoff G.D.: Demonstration d’un theoreme elementaire sur les fonctions entieres. C. R. Acad. Sci. Paris 189, 473–475 (1929) es_ES
dc.description.references Bonet J., Peris A.: Hypercyclic operators on non-normable Fréchet spaces, J. Funct. Anal. 159, 587–595 (1998) es_ES
dc.description.references Bonet J., Martínez-Giménez F., Peris A.: A Banach space which admits no chaotic operator. Bull. London Math. Soc. 33, 196–198 (2001) es_ES
dc.description.references F.F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971. es_ES
dc.description.references F.F. Bonsall and J. Duncan, Numerical ranges II, London Math. Soc. Lecture Note Ser. 10, Cambridge Univ. Press, 1973. es_ES
dc.description.references Choi Y.S. et al.: The polynomial numerical index of a Banach space. Proc. Edinburgh Math. Soc. 49, 39–52 (2006) es_ES
dc.description.references Dineen S.: Complex analysis on infinite-dimensional spaces. Springer-Verlag, London (1999) es_ES
dc.description.references Grosse-Erdmann K.-G., Peris-Manguillot A.: Linear chaos, Universitext. Springer-Verlag, London (2011) es_ES
dc.description.references C. Kitai, Invariant closed sets for linear operators, Ph.D. thesis, Univ. of Toronto, 1982. es_ES
dc.description.references Kim S.G.: Norm and numerical radius of 2-homogeneous polynomials on the real space $${\ell_{p}^{2}}$$ , (1 < p < ∞). Kyungpook Math. J. 48, 387–393 (2008) es_ES
dc.description.references Kim S.G., Martin M., Meri J.: On the polynomial numerical index of the real spaces c 0, l 1 and l ∞. J. Math. Anal. Appl. 337, 98–106 (2008) es_ES
dc.description.references Kim S.G., Peris A., Song H.G.: Numerically hypercyclic operators. Integral Equations and Operator Theory 72, 393–402 (2012) es_ES
dc.description.references Martínez-Giménez F., Peris A.: Existence of hypercyclic polynomials on complex Fréchet spaces. Topology and its Appl. 156, 3007–3010 (2009) es_ES
dc.description.references Martínez-Giménez F., Peris A.: Chaotic polynomials on sequence and function spaces. Int. J. Bifurcation and Chaos 20, 2861–2867 (2010) es_ES
dc.description.references Peris A.: Chaotic polynomials on Banach spaces. J. Math. Anal. Appl. 287, 487–493 (2003) es_ES
dc.description.references Peris A.: Erratum to “Chaotic polynomials on Fréchet spaces”. Proc. Amer. Math. Soc. 129, 3759–3760 (2001) es_ES
dc.description.references Rolewicz S.: On orbits of elements. Studia Math. 32, 17–22 (1969) es_ES
dc.description.references Salas H.N.: Hypercyclic weighted shifts. Trans. Amer. Math. Soc. 347, 993–1004 (1995) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem