Mostrar el registro sencillo del ítem
dc.contributor.author | Bhattacharjee, Papiya | es_ES |
dc.contributor.author | Knox, Michelle L. | es_ES |
dc.contributor.author | McGovern, Warren Wm. | es_ES |
dc.date.accessioned | 2014-10-27T16:44:53Z | |
dc.date.available | 2014-10-27T16:44:53Z | |
dc.date.issued | 2014-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/43614 | |
dc.description.abstract | [EN] We construct the classical ring of quotients of the algebra of continuous real-valued functions with countable range. Our construction is a slight modification of the construction given in [M. Ghadermazi, O.A.S. Karamzadeh, and M. Namdari, On the functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova, to appear]. Dowker's example shows that the two constructions can be different. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ring of continuous functions | es_ES |
dc.subject | Ring of quotients | es_ES |
dc.subject | Zero-dimensional space | es_ES |
dc.title | The classical ring of quotients of $C_c(X)$ | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2014-10-27T16:42:00Z | |
dc.identifier.doi | 10.4995/agt.2014.3181 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Bhattacharjee, P.; Knox, ML.; Mcgovern, WW. (2014). The classical ring of quotients of $C_c(X)$. Applied General Topology. 15(2):147-154. https://doi.org/10.4995/agt.2014.3181 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2014.3181 | es_ES |
dc.description.upvformatpinicio | 147 | es_ES |
dc.description.upvformatpfin | 154 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 15 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Hager, A. W., Kimber, C. M., & McGovern, W. W. (2005). Unique a-closure for some ℓ-groups of rational valued functions. Czechoslovak Mathematical Journal, 55(2), 409-421. doi:10.1007/s10587-005-0031-z | es_ES |
dc.description.references | Henriksen, M., & Woods, R. G. (2004). Cozero complemented spaces; when the space of minimal prime ideals of a C(X) is compact. Topology and its Applications, 141(1-3), 147-170. doi:10.1016/j.topol.2003.12.004 | es_ES |
dc.description.references | Knox, M. L., & McGovern, W. W. (2008). Rigid extensions of ℓ-groups of continuous functions. Czechoslovak Mathematical Journal, 58(4), 993-1014. doi:10.1007/s10587-008-0064-1 | es_ES |
dc.description.references | R. Levy and M. D. Rice, Normal $P$-spaces and the $G_delta$-topology, Colloq. Math. 44, no. 2 (1981), 227-240. | es_ES |
dc.description.references | Levy, R., & Shapiro, J. (2005). Rings of quotients of rings of functions. Topology and its Applications, 146-147, 253-265. doi:10.1016/j.topol.2003.03.003 | es_ES |
dc.description.references | A. Mysior, Two easy examples of zero-dimensional spaces, Proc. Amer. Math. Soc. 92, no. 4 (1984), 615-617. | es_ES |
dc.description.references | Porter, J. R., & Woods, R. G. (1988). Extensions and Absolutes of Hausdorff Spaces. doi:10.1007/978-1-4612-3712-9 | es_ES |
dc.description.references | Rudin, W. (1957). Continuous functions on compact spaces without perfect subsets. Proceedings of the American Mathematical Society, 8(1), 39-39. doi:10.1090/s0002-9939-1957-0085475-7 | es_ES |