- -

The classical ring of quotients of $C_c(X)$

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The classical ring of quotients of $C_c(X)$

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bhattacharjee, Papiya es_ES
dc.contributor.author Knox, Michelle L. es_ES
dc.contributor.author McGovern, Warren Wm. es_ES
dc.date.accessioned 2014-10-27T16:44:53Z
dc.date.available 2014-10-27T16:44:53Z
dc.date.issued 2014-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/43614
dc.description.abstract [EN] We construct the classical ring of quotients of the algebra of continuous real-valued functions with countable range. Our construction is a slight modification of the construction given in [M. Ghadermazi, O.A.S. Karamzadeh, and M. Namdari, On the functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova, to appear]. Dowker's example shows that the two constructions can be different. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ring of continuous functions es_ES
dc.subject Ring of quotients es_ES
dc.subject Zero-dimensional space es_ES
dc.title The classical ring of quotients of $C_c(X)$ es_ES
dc.type Artículo es_ES
dc.date.updated 2014-10-27T16:42:00Z
dc.identifier.doi 10.4995/agt.2014.3181
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bhattacharjee, P.; Knox, ML.; Mcgovern, WW. (2014). The classical ring of quotients of $C_c(X)$. Applied General Topology. 15(2):147-154. https://doi.org/10.4995/agt.2014.3181 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2014.3181 es_ES
dc.description.upvformatpinicio 147 es_ES
dc.description.upvformatpfin 154 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references Hager, A. W., Kimber, C. M., & McGovern, W. W. (2005). Unique a-closure for some ℓ-groups of rational valued functions. Czechoslovak Mathematical Journal, 55(2), 409-421. doi:10.1007/s10587-005-0031-z es_ES
dc.description.references Henriksen, M., & Woods, R. G. (2004). Cozero complemented spaces; when the space of minimal prime ideals of a C(X) is compact. Topology and its Applications, 141(1-3), 147-170. doi:10.1016/j.topol.2003.12.004 es_ES
dc.description.references Knox, M. L., & McGovern, W. W. (2008). Rigid extensions of ℓ-groups of continuous functions. Czechoslovak Mathematical Journal, 58(4), 993-1014. doi:10.1007/s10587-008-0064-1 es_ES
dc.description.references R. Levy and M. D. Rice, Normal $P$-spaces and the $G_delta$-topology, Colloq. Math. 44, no. 2 (1981), 227-240. es_ES
dc.description.references Levy, R., & Shapiro, J. (2005). Rings of quotients of rings of functions. Topology and its Applications, 146-147, 253-265. doi:10.1016/j.topol.2003.03.003 es_ES
dc.description.references A. Mysior, Two easy examples of zero-dimensional spaces, Proc. Amer. Math. Soc. 92, no. 4 (1984), 615-617. es_ES
dc.description.references Porter, J. R., & Woods, R. G. (1988). Extensions and Absolutes of Hausdorff Spaces. doi:10.1007/978-1-4612-3712-9 es_ES
dc.description.references Rudin, W. (1957). Continuous functions on compact spaces without perfect subsets. Proceedings of the American Mathematical Society, 8(1), 39-39. doi:10.1090/s0002-9939-1957-0085475-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem